These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21354388)

  • 1. A unified model of transcription elongation: what have we learned from single-molecule experiments?
    Ó Maoiléidigh D; Tadigotla VR; Nudler E; Ruckenstein AE
    Biophys J; 2011 Mar; 100(5):1157-66. PubMed ID: 21354388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A small post-translocation energy bias aids nucleotide selection in T7 RNA polymerase transcription.
    Yu J; Oster G
    Biophys J; 2012 Feb; 102(3):532-41. PubMed ID: 22325276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and kinetic modeling of transcriptional pausing.
    Tadigotla VR; O Maoiléidigh D; Sengupta AM; Epshtein V; Ebright RH; Nudler E; Ruckenstein AE
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4439-44. PubMed ID: 16537373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different types of pausing modes during transcription initiation.
    Lerner E; Ingargiola A; Lee JJ; Borukhov S; Michalet X; Weiss S
    Transcription; 2017 Aug; 8(4):242-253. PubMed ID: 28332923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase.
    Lerner E; Chung S; Allen BL; Wang S; Lee J; Lu SW; Grimaud LW; Ingargiola A; Michalet X; Alhadid Y; Borukhov S; Strick TR; Taatjes DJ; Weiss S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):E6562-E6571. PubMed ID: 27729537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier.
    Jin J; Bai L; Johnson DS; Fulbright RM; Kireeva ML; Kashlev M; Wang MD
    Nat Struct Mol Biol; 2010 Jun; 17(6):745-52. PubMed ID: 20453861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-dependent kinetic model for transcription elongation by RNA polymerase.
    Bai L; Shundrovsky A; Wang MD
    J Mol Biol; 2004 Nov; 344(2):335-49. PubMed ID: 15522289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural model of transcription elongation.
    Korzheva N; Mustaev A; Kozlov M; Malhotra A; Nikiforov V; Goldfarb A; Darst SA
    Science; 2000 Jul; 289(5479):619-25. PubMed ID: 10915625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical kinetics of transcription elongation.
    Bai L; Fulbright RM; Wang MD
    Phys Rev Lett; 2007 Feb; 98(6):068103. PubMed ID: 17358986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase.
    Nudler E; Mustaev A; Lukhtanov E; Goldfarb A
    Cell; 1997 Apr; 89(1):33-41. PubMed ID: 9094712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density- and elongation speed-dependent error correction in RNA polymerization.
    Zuo X; Chou T
    Phys Biol; 2022 Jan; 19(2):. PubMed ID: 34937012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking RNA polymerase backtracking to genome instability in E. coli.
    Dutta D; Shatalin K; Epshtein V; Gottesman ME; Nudler E
    Cell; 2011 Aug; 146(4):533-43. PubMed ID: 21854980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downstream DNA sequence effects on transcription elongation. Allosteric binding of nucleoside triphosphates facilitates translocation via a ratchet motion.
    Holmes SF; Erie DA
    J Biol Chem; 2003 Sep; 278(37):35597-608. PubMed ID: 12813036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions.
    Sekine S; Murayama Y; Svetlov V; Nudler E; Yokoyama S
    Mol Cell; 2015 Feb; 57(3):408-21. PubMed ID: 25601758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators.
    Kang JY; Mooney RA; Nedialkov Y; Saba J; Mishanina TV; Artsimovitch I; Landick R; Darst SA
    Cell; 2018 Jun; 173(7):1650-1662.e14. PubMed ID: 29887376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backtracking dynamics of RNA polymerase: pausing and error correction.
    Sahoo M; Klumpp S
    J Phys Condens Matter; 2013 Sep; 25(37):374104. PubMed ID: 23945272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applied force reveals mechanistic and energetic details of transcription termination.
    Larson MH; Greenleaf WJ; Landick R; Block SM
    Cell; 2008 Mar; 132(6):971-82. PubMed ID: 18358810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site closure stabilizes the backtracked state of RNA polymerase.
    Turtola M; Mäkinen JJ; Belogurov GA
    Nucleic Acids Res; 2018 Nov; 46(20):10870-10887. PubMed ID: 30256972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.