BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21354614)

  • 1. Multifunctional 4-bit biomemory chip consisting of recombinant azurin variants.
    Lee T; Min J; Kim SU; Choi JW
    Biomaterials; 2011 May; 32(15):3815-21. PubMed ID: 21354614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-bit biomemory consisting of recombinant protein variants, azurin.
    Yagati AK; Kim SU; Min J; Choi JW
    Biosens Bioelectron; 2009 Jan; 24(5):1503-7. PubMed ID: 18809307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of surfactant CHAPS effect using AFM for making biomemory device consisting of recombinant azurin monolayer.
    Lee T; Ahmed El-Said W; Min J; Oh BK; Choi JW
    Ultramicroscopy; 2010 May; 110(6):712-7. PubMed ID: 20206446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale protein-based memory device composed of recombinant azurin.
    Kim SU; Yagati AK; Min J; Choi JW
    Biomaterials; 2010 Feb; 31(6):1293-8. PubMed ID: 19857891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.
    Yagati AK; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2013 Feb; 40(1):283-90. PubMed ID: 22884649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional DNA-based biomemory device consisting of ssDNA/Cu heterolayers.
    Lee T; El-Said WA; Min J; Choi JW
    Biosens Bioelectron; 2011 Jan; 26(5):2304-10. PubMed ID: 21051218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion protein bilayer fabrication composed of recombinant azurin/cytochrome P450 by the sortase-mediated ligation method.
    Lee T; Min J; Hirakawa H; Nagamune T; Choi JW
    Colloids Surf B Biointerfaces; 2014 Aug; 120():215-21. PubMed ID: 24924834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct immobilization of cupredoxin azurin modified by site-directed mutagenesis on gold surface.
    Kim SU; Kim YJ; Choi SG; Yea CH; Singh RP; Min J; Oh BK; Choi JW
    Ultramicroscopy; 2008 Sep; 108(10):1390-5. PubMed ID: 18667275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of recombinant azurin self-assembled layer for the application of bioelectronic device.
    Min J; Kim SU; Kim YJ; Yea CH; Choi JW
    J Nanosci Nanotechnol; 2008 Oct; 8(10):4982-7. PubMed ID: 19198375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and mechanistic studies of type-1 and type-2 copper sites in Pseudomonas aeruginosa azurin as obtained by addition of external ligands to mutant His46Gly.
    van Pouderoyen G; Andrew CR; Loehr TM; Sanders-Loehr J; Mazumdar S; Hill HA; Canters GW
    Biochemistry; 1996 Feb; 35(5):1397-407. PubMed ID: 8634269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The selenocysteine-substituted blue copper center: spectroscopic investigations of Cys112SeCys Pseudomonas aeruginosa azurin.
    Ralle M; Berry SM; Nilges MJ; Gieselman MD; van der Donk WA; Lu Y; Blackburn NJ
    J Am Chem Soc; 2004 Jun; 126(23):7244-56. PubMed ID: 15186162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale film formation of ferritin and its application to biomemory device.
    Kim SU; Lee T; Lee JH; Yagati AK; Min J; Choi JW
    Ultramicroscopy; 2009 Jul; 109(8):974-9. PubMed ID: 19345503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the redox potential of the protein azurin and some mutants.
    van den Bosch M; Swart M; Snijders JG; Berendsen HJ; Mark AE; Oostenbrink C; van Gunsteren WF; Canters GW
    Chembiochem; 2005 Apr; 6(4):738-46. PubMed ID: 15747387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-based multi-bit biomemory device consisting of various metalloproteins on self-assembled 11-MUA layer.
    Lee T; Min J; Lee JH; Choi JW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):523-7. PubMed ID: 21446489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized biorecognition of cytochrome c 551 and azurin immobilized on thiol-terminated monolayers assembled on Au(111) substrates.
    Bonanni B; Bizzarri AR; Cannistraro S
    J Phys Chem B; 2006 Aug; 110(30):14574-80. PubMed ID: 16869557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction potential variations in azurin through secondary coordination sphere phenylalanine incorporations.
    Berry SM; Baker MH; Reardon NJ
    J Inorg Biochem; 2010 Oct; 104(10):1071-8. PubMed ID: 20615551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STM and cyclic voltammetric investigation of recombinant azurin-gold nanoparticle hybrids.
    Yagati AK; Lee T; Min J; Choi JW
    Bioelectrochemistry; 2012 Feb; 83():8-14. PubMed ID: 21840267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox properties of an engineered purple Cu(A) azurin.
    Sun D; Wang X; Davidson VL
    Arch Biochem Biophys; 2002 Aug; 404(1):158-62. PubMed ID: 12127080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical analysis of azurin thermodynamic and adsorption properties at monolayer-protected cluster film assemblies - evidence for a more homogeneous adsorption interface.
    Tran TD; Vargo ML; Gerig JK; Gulka CP; Trawick ML; Dattelbaum JD; Leopold MC
    J Colloid Interface Sci; 2010 Dec; 352(1):50-8. PubMed ID: 20825950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale film formation of recombinant azurin variants with various cysteine residues on gold substrate for bioelectronic device.
    Kim SU; Lee JH; Lee T; Min J; Choi JW
    J Nanosci Nanotechnol; 2010 May; 10(5):3241-5. PubMed ID: 20358931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.