These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 21354696)

  • 1. Shock wave technology and application: an update.
    Rassweiler JJ; Knoll T; Köhrmann KU; McAteer JA; Lingeman JE; Cleveland RO; Bailey MR; Chaussy C
    Eur Urol; 2011 May; 59(5):784-96. PubMed ID: 21354696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Current status of extracorporeal shock wave lithotripsy in urinary lithiasis.].
    Pereira-Arias JG; Gamarra-Quintanilla M; Urdaneta-Salegui LF; Mora-Christian JA; Sánchez-Vazquez A; Astobieta-Odriozola A; Ibarluzea-González G
    Arch Esp Urol; 2017 Mar; 70(2):263-287. PubMed ID: 28300033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in lithotripsy technology and treatment strategies: A systematic review update.
    Elmansy HE; Lingeman JE
    Int J Surg; 2016 Dec; 36(Pt D):676-680. PubMed ID: 27890653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heuristic model of stone comminution in shock wave lithotripsy.
    Smith NB; Zhong P
    J Acoust Soc Am; 2013 Aug; 134(2):1548-58. PubMed ID: 23927195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turbulent water coupling in shock wave lithotripsy.
    Lautz J; Sankin G; Zhong P
    Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Update on shock wave lithotripsy technology.
    Auge BK; Preminger GM
    Curr Opin Urol; 2002 Jul; 12(4):287-90. PubMed ID: 12072648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Newly designed solid coupling medium for reducing trapped air pockets during extracorporeal shock wave lithotripsy_ a phantom study.
    Wang CS; Li CC; Wu WJ; Liou WC; Lin YE; Chen WC
    BMC Urol; 2021 May; 21(1):79. PubMed ID: 33990213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Extracorporeal shock wave lithotripsy: benefits, limitationsand prospects].
    Pavlov VN; Alekseev AV; Pushkarev AM; Iskhakova RS; Garipov MR; Makhmutyanova AA
    Urologiia; 2016 Aug; (4):122-126. PubMed ID: 28247739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the coupling of the lithotripter therapy head with skin during routine shock wave lithotripsy with a surveillance camera.
    Bohris C; Roosen A; Dickmann M; Hocaoglu Y; Sandner S; Bader M; Stief CG; Walther S
    J Urol; 2012 Jan; 187(1):157-63. PubMed ID: 22100005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size and location of defects at the coupling interface affect lithotripter performance.
    Li G; Williams JC; Pishchalnikov YA; Liu Z; McAteer JA
    BJU Int; 2012 Dec; 110(11 Pt C):E871-7. PubMed ID: 22938566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shock wave lithotripsy: the new phoenix?
    Neisius A; Lipkin ME; Rassweiler JJ; Zhong P; Preminger GM; Knoll T
    World J Urol; 2015 Feb; 33(2):213-21. PubMed ID: 25081010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.
    Yılmaz B; Çiftçi E
    Comput Methods Programs Biomed; 2013 Jun; 110(3):389-98. PubMed ID: 23261077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracorporeal shock wave lithotripsy is effective in treating single melamine induced urolithiasis in infants and young children.
    Jia J; Shen X; Wang L; Zhang T; Xu M; Fang X; Xu G; Qian C; Wu Y; Geng H
    J Urol; 2013 Apr; 189(4):1498-502. PubMed ID: 23201375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracorporeal lithotripsy. Update on technology.
    Chow GK; Streem SB
    Urol Clin North Am; 2000 May; 27(2):315-22. PubMed ID: 10778473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracorporeal Shock Wave Therapy: Current Perspectives and Future Directions.
    Lawler AC; Ghiraldi EM; Tong C; Friedlander JI
    Curr Urol Rep; 2017 Apr; 18(4):25. PubMed ID: 28247327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.
    Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of modification of shock-wave delivery on stone fragmentation.
    Talic RF; Rabah DM
    Curr Opin Urol; 2006 Mar; 16(2):83-7. PubMed ID: 16479209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Urolithiasis--a change in therapeutic methods extracorporeal shock wave lithotripsy using a Dornier kidney lithotripter HM3].
    Yamamoto K; Kishimoto T; Sakamoto W; Sugimoto T; Iimori H; Kanasawa T; Wada S; Senju M; Nakatani T; Sugimura K
    Hinyokika Kiyo; 1989 Dec; 35(12):2093-8. PubMed ID: 2618909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.