These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21355039)

  • 1. Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules.
    Babiskin AH; Smolke CD
    Nucleic Acids Res; 2011 Jul; 39(12):5299-311. PubMed ID: 21355039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity.
    Babiskin AH; Smolke CD
    Nucleic Acids Res; 2011 Oct; 39(19):8651-64. PubMed ID: 21737428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic library of RNA control modules for predictable tuning of gene expression in yeast.
    Babiskin AH; Smolke CD
    Mol Syst Biol; 2011 Mar; 7():471. PubMed ID: 21364573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of Rnt1p: An alternative to RNAi for targeted RNA degradation.
    Abou Elela S; Ji X
    Wiley Interdiscip Rev RNA; 2019 May; 10(3):e1521. PubMed ID: 30548404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs.
    Wang Z; Hartman E; Roy K; Chanfreau G; Feigon J
    Structure; 2011 Jul; 19(7):999-1010. PubMed ID: 21742266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
    Lavoie M; Abou Elela S
    Biochemistry; 2008 Aug; 47(33):8514-26. PubMed ID: 18646867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III.
    Ghazal G; Elela SA
    J Mol Biol; 2006 Oct; 363(2):332-44. PubMed ID: 16962133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the RNA determinants for bacterial and yeast RNase III binding and cleavage.
    Lamontagne B; Elela SA
    J Biol Chem; 2004 Jan; 279(3):2231-41. PubMed ID: 14581474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III.
    Chanfreau G; Buckle M; Jacquier A
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3142-7. PubMed ID: 10716739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5'-AGNN-3' tetraloop.
    Nagel R; Ares M
    RNA; 2000 Aug; 6(8):1142-56. PubMed ID: 10943893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III.
    Henras AK; Sam M; Hiley SL; Wu H; Hughes TR; Feigon J; Chanfreau GF
    RNA; 2005 Aug; 11(8):1225-37. PubMed ID: 15987808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNase III-mediated silencing of a glucose-dependent repressor in yeast.
    Ge D; Lamontagne B; Elela SA
    Curr Biol; 2005 Jan; 15(2):140-5. PubMed ID: 15668170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-induced inhibition of mRNA export triggers RNase III-mediated decay of the
    Wang C; Barr K; Neutel D; Roy K; Liu Y; Chanfreau GF
    RNA; 2021 Dec; 27(12):1545-1556. PubMed ID: 34497070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cotranscriptional model for 3'-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor.
    Henras AK; Bertrand E; Chanfreau G
    RNA; 2004 Oct; 10(10):1572-85. PubMed ID: 15337846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNase III-dependent regulation of yeast telomerase.
    Larose S; Laterreur N; Ghazal G; Gagnon J; Wellinger RJ; Elela SA
    J Biol Chem; 2007 Feb; 282(7):4373-4381. PubMed ID: 17158880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites.
    Hartman E; Wang Z; Zhang Q; Roy K; Chanfreau G; Feigon J
    J Mol Biol; 2013 Feb; 425(3):546-62. PubMed ID: 23201338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals.
    Ghazal G; Ge D; Gervais-Bird J; Gagnon J; Abou Elela S
    Mol Cell Biol; 2005 Apr; 25(8):2981-94. PubMed ID: 15798187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence dependence of substrate recognition and cleavage by yeast RNase III.
    Lamontagne B; Ghazal G; Lebars I; Yoshizawa S; Fourmy D; Elela SA
    J Mol Biol; 2003 Apr; 327(5):985-1000. PubMed ID: 12662924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.