BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 21355049)

  • 1. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease.
    Shi G; Lee JR; Grimes DA; Racacho L; Ye D; Yang H; Ross OA; Farrer M; McQuibban GA; Bulman DE
    Hum Mol Genet; 2011 May; 20(10):1966-74. PubMed ID: 21355049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis.
    Yan C; Gong L; Chen L; Xu M; Abou-Hamdan H; Tang M; Désaubry L; Song Z
    Autophagy; 2020 Mar; 16(3):419-434. PubMed ID: 31177901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy.
    Meissner C; Lorenz H; Hehn B; Lemberg MK
    Autophagy; 2015; 11(9):1484-98. PubMed ID: 26101826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy.
    Poláchová E; Bach K; Heuten E; Stanchev S; Tichá A; Lampe P; Majer P; Langer T; Lemberg MK; Stříšovský K
    J Med Chem; 2023 Jan; 66(1):251-265. PubMed ID: 36540942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of PARL-PINK1-Parkin pathway in adipocyte differentiation.
    Shiau MY; Lee PS; Huang YJ; Yang CP; Hsiao CW; Chang KY; Chen HW; Chang YH
    Metabolism; 2017 Jul; 72():1-17. PubMed ID: 28641777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PINK1 cleavage at position A103 by the mitochondrial protease PARL.
    Deas E; Plun-Favreau H; Gandhi S; Desmond H; Kjaer S; Loh SH; Renton AE; Harvey RJ; Whitworth AJ; Martins LM; Abramov AY; Wood NW
    Hum Mol Genet; 2011 Mar; 20(5):867-79. PubMed ID: 21138942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL.
    Jin SM; Lazarou M; Wang C; Kane LA; Narendra DP; Youle RJ
    J Cell Biol; 2010 Nov; 191(5):933-42. PubMed ID: 21115803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.
    Koyano F; Yamano K; Kosako H; Tanaka K; Matsuda N
    J Biol Chem; 2019 Jun; 294(26):10300-10314. PubMed ID: 31110043
    [No Abstract]   [Full Text] [Related]  

  • 10. The Mitochondrial Rhomboid Protease PARL Is Regulated by PDK2 to Integrate Mitochondrial Quality Control and Metabolism.
    Shi G; McQuibban GA
    Cell Rep; 2017 Feb; 18(6):1458-1472. PubMed ID: 28178523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy.
    Matsuda N; Sato S; Shiba K; Okatsu K; Saisho K; Gautier CA; Sou YS; Saiki S; Kawajiri S; Sato F; Kimura M; Komatsu M; Hattori N; Tanaka K
    J Cell Biol; 2010 Apr; 189(2):211-21. PubMed ID: 20404107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PINK1 is degraded through the N-end rule pathway.
    Yamano K; Youle RJ
    Autophagy; 2013 Nov; 9(11):1758-69. PubMed ID: 24121706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance.
    Buhlman L; Damiano M; Bertolin G; Ferrando-Miguel R; Lombès A; Brice A; Corti O
    Biochim Biophys Acta; 2014 Sep; 1843(9):2012-26. PubMed ID: 24878071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease.
    Bonello F; Hassoun SM; Mouton-Liger F; Shin YS; Muscat A; Tesson C; Lesage S; Beart PM; Brice A; Krupp J; Corvol JC; Corti O
    Hum Mol Genet; 2019 May; 28(10):1645-1660. PubMed ID: 30629163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zebrafish Parla- and Parlb-deficiency affects dopaminergic neuron patterning and embryonic survival.
    Noble S; Ismail A; Godoy R; Xi Y; Ekker M
    J Neurochem; 2012 Jul; 122(1):196-207. PubMed ID: 22506991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking.
    Meissner C; Lorenz H; Weihofen A; Selkoe DJ; Lemberg MK
    J Neurochem; 2011 Jun; 117(5):856-67. PubMed ID: 21426348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
    Clark IE; Dodson MW; Jiang C; Cao JH; Huh JR; Seol JH; Yoo SJ; Hay BA; Guo M
    Nature; 2006 Jun; 441(7097):1162-6. PubMed ID: 16672981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson's disease.
    Wüst R; Maurer B; Hauser K; Woitalla D; Sharma M; Krüger R
    Neurobiol Aging; 2016 Mar; 39():217.e13-5. PubMed ID: 26778534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by mitophagy.
    Hattori N; Saiki S; Imai Y
    Int J Biochem Cell Biol; 2014 Aug; 53():147-50. PubMed ID: 24842103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.