These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21355502)

  • 1. Bi-k-bi clustering: mining large scale gene expression data using two-level biclustering.
    Carkacioğlu L; Atalay RC; Konu O; Atalay V; Can T
    Int J Data Min Bioinform; 2010; 4(6):701-21. PubMed ID: 21355502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Gene Expression Patterns Using Biclustering.
    Roy S; Bhattacharyya DK; Kalita JK
    Methods Mol Biol; 2016; 1375():91-103. PubMed ID: 26350227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing large gene expression and methylation data profiles using StatBicRM: statistical biclustering-based rule mining.
    Maulik U; Mallik S; Mukhopadhyay A; Bandyopadhyay S
    PLoS One; 2015; 10(4):e0119448. PubMed ID: 25830807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bi-Force: large-scale bicluster editing and its application to gene expression data biclustering.
    Sun P; Speicher NK; Röttger R; Guo J; Baumbach J
    Nucleic Acids Res; 2014 May; 42(9):e78. PubMed ID: 24682815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data.
    Xie J; Ma A; Fennell A; Ma Q; Zhao J
    Brief Bioinform; 2019 Jul; 20(4):1449-1464. PubMed ID: 29490019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic biclustering of microarray data by multi-objective immune optimization.
    Liu J; Li Z; Hu X; Chen Y; Park EK
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S11. PubMed ID: 21989068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiently mining time-delayed gene expression patterns.
    Wang G; Yin L; Zhao Y; Mao K
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):400-11. PubMed ID: 19884096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An iterative data mining approach for mining overlapping coexpression patterns in noisy gene expression data.
    Ma PC; Chan KC
    IEEE Trans Nanobioscience; 2009 Sep; 8(3):252-8. PubMed ID: 19605326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic comparison and evaluation of biclustering methods for gene expression data.
    Prelić A; Bleuler S; Zimmermann P; Wille A; Bühlmann P; Gruissem W; Hennig L; Thiele L; Zitzler E
    Bioinformatics; 2006 May; 22(9):1122-9. PubMed ID: 16500941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive knowledge discovery and data mining on genomic expression data with numeric formal concept analysis.
    González-Calabozo JM; Valverde-Albacete FJ; Peláez-Moreno C
    BMC Bioinformatics; 2016 Sep; 17(1):374. PubMed ID: 27628041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bottom-up approach to the biclustering-problem.
    Koh HW; Hildebrand L
    Int J Comput Biol Drug Des; 2008; 1(2):158-73. PubMed ID: 20058487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BARTMAP: a viable structure for biclustering.
    Xu R; Wunsch Ii DC
    Neural Netw; 2011 Sep; 24(7):709-16. PubMed ID: 21493039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimised gene selection approach using wavelet power spectrum.
    Prabakaran S; Sahu R; Verma S
    Int J Bioinform Res Appl; 2011; 7(4):335-54. PubMed ID: 22112527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining subspace clusters from DNA microarray data using large itemset techniques.
    Chang YI; Chen JR; Tsai YC
    J Comput Biol; 2009 May; 16(5):745-68. PubMed ID: 19432542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting regulatory modules from gene expression data by sequential pattern mining.
    Kim M; Shin H; Su Chung T; Joung JG; Kim JH
    BMC Genomics; 2011 Nov; 12 Suppl 3(Suppl 3):S5. PubMed ID: 22369275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new geometric biclustering algorithm based on the Hough transform for analysis of large-scale microarray data.
    Zhao H; Liew AW; Xie X; Yan H
    J Theor Biol; 2008 Mar; 251(2):264-74. PubMed ID: 18199458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining microarray data at NCBI's Gene Expression Omnibus (GEO)*.
    Barrett T; Edgar R
    Methods Mol Biol; 2006; 338():175-90. PubMed ID: 16888359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biclustering algorithms for biological data analysis: a survey.
    Madeira SC; Oliveira AL
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(1):24-45. PubMed ID: 17048406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing microarray data using quantitative association rules.
    Georgii E; Richter L; Rückert U; Kramer S
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii123-9. PubMed ID: 16204090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of clustering algorithms for gene expression data.
    Datta S; Datta S
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S17. PubMed ID: 17217509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.