These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 21355571)

  • 1. Role of surface ligands in the nanoparticle assemblies: a case study of regularly shaped colloidal crystals composed of sodium rare earth fluoride.
    Feng W; Sun LD; Yan CH
    Langmuir; 2011 Apr; 27(7):3343-7. PubMed ID: 21355571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two new colloidal crystal phases of lipid A-monophosphate: order-to-order transition in colloidal crystals.
    Faunce CA; Paradies HH
    J Chem Phys; 2009 Dec; 131(24):244708. PubMed ID: 20059100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase.
    Sun X; Zhang YW; Du YP; Yan ZG; Si R; You LP; Yan CH
    Chemistry; 2007; 13(8):2320-32. PubMed ID: 17163562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic and capillary force directed tunable 3D binary micro- and nanoparticle assemblies on surfaces.
    Singh G; Pillai S; Arpanaei A; Kingshott P
    Nanotechnology; 2011 Jun; 22(22):225601. PubMed ID: 21454932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-guided crystallization of colloidal nanoparticles.
    Nykypanchuk D; Maye MM; van der Lelie D; Gang O
    Nature; 2008 Jan; 451(7178):549-52. PubMed ID: 18235496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.
    Zhang X; Zhang J; Zhu D; Li X; Zhang X; Wang T; Yang B
    Langmuir; 2010 Dec; 26(23):17936-42. PubMed ID: 20973566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled colloidal crystals from ZrO2 nanoparticles.
    Woodward JD; Pickel JM; Anovitz LM; Heller WT; Rondinone AJ
    J Phys Chem B; 2006 Oct; 110(39):19456-60. PubMed ID: 17004805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement.
    Noh H; Choi C; Hung AM; Jin S; Cha JN
    ACS Nano; 2010 Sep; 4(9):5076-80. PubMed ID: 20718405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anionic surfactants on synthesis and self-assembly of silica colloidal nanoparticles.
    Wang W; Gu B; Liang L
    J Colloid Interface Sci; 2007 Sep; 313(1):169-73. PubMed ID: 17512000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of highly ordered rectangular nanoparticle superlattices by the cooperative self-assembly of nanoparticles and fatty molecules.
    Harada T; Hatton TA
    Langmuir; 2009 Jun; 25(11):6407-12. PubMed ID: 19466789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles.
    Hickey RJ; Haynes AS; Kikkawa JM; Park SJ
    J Am Chem Soc; 2011 Feb; 133(5):1517-25. PubMed ID: 21208004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles.
    Tao J; Pan H; Zeng Y; Xu X; Tang R
    J Phys Chem B; 2007 Nov; 111(47):13410-8. PubMed ID: 17979266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal assembly: the road from particles to colloidal molecules and crystals.
    Li F; Josephson DP; Stein A
    Angew Chem Int Ed Engl; 2011 Jan; 50(2):360-88. PubMed ID: 21038335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rare earth fluoride nanoparticles obtained using charge transfer complexes: a versatile and efficient route toward colloidal suspensions and monolithic transparent xerogels.
    Chaput F; Lerouge F; Tusseau-Nenez S; Coulon PE; Dujardin C; Denis-Quanquin S; Mpambani F; Parola S
    Langmuir; 2011 May; 27(9):5555-61. PubMed ID: 21469685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific functionalization of anisotropic nanoparticles: from colloidal atoms to colloidal molecules.
    Li F; Yoo WC; Beernink MB; Stein A
    J Am Chem Soc; 2009 Dec; 131(51):18548-55. PubMed ID: 19954228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-programmable nanoparticle crystallization.
    Park SY; Lytton-Jean AK; Lee B; Weigand S; Schatz GC; Mirkin CA
    Nature; 2008 Jan; 451(7178):553-6. PubMed ID: 18235497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.