These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1047 related articles for article (PubMed ID: 21355585)

  • 1. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires.
    Kwak G; Lee M; Senthil K; Yong K
    Langmuir; 2010 Jul; 26(14):12273-7. PubMed ID: 20509642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires.
    Seo J; Lee S; Lee J; Lee T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic wet etched silicon substrates for reoriented and selective growth of ZnO nanowires and enhanced hydrophobicity.
    Li S; Hu J; Li J; Tian J; Han Z; Zhou X; Chen Y
    Langmuir; 2011 Jun; 27(11):6549-53. PubMed ID: 21539351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.
    Lee JP; Choi S; Park S
    Langmuir; 2011 Jan; 27(2):809-14. PubMed ID: 21162520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible electrowetting on superhydrophobic double-nanotextured surfaces.
    Lapierre F; Thomy V; Coffinier Y; Blossey R; Boukherroub R
    Langmuir; 2009 Jun; 25(11):6551-8. PubMed ID: 19402607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-(111) surface silicon nanowires: selective functionalization for biosensing applications.
    Masood MN; Chen S; Carlen ET; van den Berg A
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3422-8. PubMed ID: 21090766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.
    Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH
    Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.
    McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA
    Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and flow of droplets on solid surfaces.
    Müller-Buschbaum P; Magerl D; Hengstler R; Moulin JF; Körstgens V; Diethert A; Perlich J; Roth SV; Burghammer M; Riekel C; Gross M; Varnik F; Uhlmann P; Stamm M; Feldkamp JM; Schroer CG
    J Phys Condens Matter; 2011 May; 23(18):184111. PubMed ID: 21508480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective adhesion of Bacillus cereus spores on heterogeneously wetted silicon nanowires.
    Galopin E; Piret G; Szunerits S; Lequette Y; Faille C; Boukherroub R
    Langmuir; 2010 Mar; 26(5):3479-84. PubMed ID: 19891454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-catalyzed vapor-liquid-solid germanium-nanowire nucleation on porous silicon.
    Koto M; Marshall AF; Goldthorpe IA; McIntyre PC
    Small; 2010 May; 6(9):1032-7. PubMed ID: 20411571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings.
    Kim BS; Shin S; Shin SJ; Kim KM; Cho HH
    Langmuir; 2011 Aug; 27(16):10148-56. PubMed ID: 21728376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching.
    He Y; Jiang C; Yin H; Chen J; Yuan W
    J Colloid Interface Sci; 2011 Dec; 364(1):219-29. PubMed ID: 21889158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructural transformation and formation of heterojunctions from Si nanowires.
    Wong TL; Cheng C; Li W; Fung KK; Wang N
    ACS Nano; 2010 Oct; 4(10):5559-64. PubMed ID: 20845917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of superhydrophobic silicon oxide nanowire surfaces.
    Coffinier Y; Janel S; Addad A; Blossey R; Gengembre L; Payen E; Boukherroub R
    Langmuir; 2007 Feb; 23(4):1608-11. PubMed ID: 17279635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.