BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21357097)

  • 1. Xenopus laevis Keller Explants.
    Sive HL; Grainger RM; Harland RM
    CSH Protoc; 2007 Jun; 2007():pdb.prot4749. PubMed ID: 21357097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsurgical Methods to Make the Keller Sandwich Explant and the Dorsal Isolate.
    Davidson LA
    Cold Spring Harb Protoc; 2022 Nov; 2022(11):Pdb.prot097386. PubMed ID: 35577523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsurgical Methods to Isolate and Culture the Early Gastrula Dorsal Marginal Zone.
    Davidson LA
    Cold Spring Harb Protoc; 2022 Nov; 2022(11):Pdb.prot097360. PubMed ID: 35577522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm.
    Poznanski A; Minsuk S; Stathopoulos D; Keller R
    Dev Biol; 1997 Sep; 189(2):256-69. PubMed ID: 9299118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone.
    Kakebeen AD; Huebner RJ; Shindo A; Kwon K; Kwon T; Wills AE; Wallingford JB
    Dev Dyn; 2021 May; 250(5):717-731. PubMed ID: 33368695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus.
    Poznanski A; Keller R
    Dev Biol; 1997 Apr; 184(2):351-66. PubMed ID: 9133441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin alpha(5)beta(1), fibronectin, and tissue geometry.
    Davidson LA; Hoffstrom BG; Keller R; DeSimone DW
    Dev Biol; 2002 Feb; 242(2):109-29. PubMed ID: 11820810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of mesoderm markers in Xenopus laevis Keller explants.
    Saint-Jeannet JP; Karavanov AA; Dawid IB
    Int J Dev Biol; 1994 Dec; 38(4):605-11. PubMed ID: 7779682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of three-notochord explants for imaging analysis of the cell movements of convergent extension during early Xenopus morphogenesis.
    Goto T; Keller R
    Dev Growth Differ; 2021 Oct; 63(8):429-438. PubMed ID: 34464453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle specification in the Xenopus laevis gastrula-stage embryo.
    Wunderlich K; Gustin JK; Domingo CR
    Dev Dyn; 2005 Aug; 233(4):1348-58. PubMed ID: 15965978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsurgical Manipulations to Isolate Collectively Migrating Mesendoderm.
    Davidson LA
    Cold Spring Harb Protoc; 2022 Nov; 2022(11):Pdb.prot097378. PubMed ID: 35577524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellular basis of the convergence and extension of the Xenopus neural plate.
    Keller R; Shih J; Sater A
    Dev Dyn; 1992 Mar; 193(3):199-217. PubMed ID: 1600240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGF is required for posterior neural patterning but not for neural induction.
    Holowacz T; Sokol S
    Dev Biol; 1999 Jan; 205(2):296-308. PubMed ID: 9917365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of neuronal differentiation by planar signals in Xenopus embryos.
    Sater AK; Steinhardt RA; Keller R
    Dev Dyn; 1993 Aug; 197(4):268-80. PubMed ID: 8292824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of anteroposterior neural pattern in Xenopus by planar signals.
    Doniach T
    Dev Suppl; 1992; ():183-93. PubMed ID: 1363721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of gastrulation in the white sturgeon.
    Bolker JA
    J Exp Zool; 1993 Jun; 266(2):132-45. PubMed ID: 8501437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive and Negative Regulation of the Differentiation of Ventral Mesoderm for Erythrocytes in Xenopus laevis: (Xenopus laevis/erythropoiesis/embryonic blood island/explant/regulation).
    Maéno M; Ong RC; Kung HF
    Dev Growth Differ; 1992 Oct; 34(5):567-577. PubMed ID: 37281716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of vertical and planar signals during the early steps of neural induction.
    Grunz H; Schüren C; Richter K
    Int J Dev Biol; 1995 Jun; 39(3):539-43. PubMed ID: 7577445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system.
    Doniach T
    J Neurobiol; 1993 Oct; 24(10):1256-75. PubMed ID: 8228959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.