These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21357097)

  • 41. An inhibitory effect of Xenopus gastrula ectoderm on muscle cell differentiation and its role for dorsoventral patterning of mesoderm.
    Kato K; Gurdon JB
    Dev Biol; 1994 May; 163(1):222-9. PubMed ID: 8174778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis.
    Keller R; Tibbetts P
    Dev Biol; 1989 Feb; 131(2):539-49. PubMed ID: 2463948
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis.
    Savage R; Phillips CR
    Dev Biol; 1989 May; 133(1):157-68. PubMed ID: 2651180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Xoom is required for epibolic movement of animal ectodermal cells in Xenopus laevis gastrulation.
    Hasegawa K; Kinoshita T
    Dev Growth Differ; 2000 Aug; 42(4):337-46. PubMed ID: 10969733
    [TBL] [Abstract][Full Text] [Related]  

  • 46. When does the anterior endomesderm meet the anterior-most neuroectoderm during Xenopus gastrulation?
    Koide T; Umesono K; Hashimoto C
    Int J Dev Biol; 2002 Sep; 46(6):777-83. PubMed ID: 12382943
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue.
    Maéno M; Ong RC; Xue Y; Nishimatsu S; Ueno N; Kung HF
    Dev Biol; 1994 Feb; 161(2):522-9. PubMed ID: 8313998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis.
    Doniach T; Phillips CR; Gerhart JC
    Science; 1992 Jul; 257(5069):542-5. PubMed ID: 1636091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. xGit2 and xRhoGAP 11A regulate convergent extension and tissue separation in Xenopus gastrulation.
    Köster I; Jungwirth MS; Steinbeisser H
    Dev Biol; 2010 Aug; 344(1):26-35. PubMed ID: 20380829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis.
    Asashima M; Grunz H
    Differentiation; 1983; 23(3):206-12. PubMed ID: 6852404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The morphogenetic reactions of the ectoderm in the early gastrula of the clawed toad to mechanical stretching].
    Luchinskaia NN; Belousov LV; Shteĭn AA
    Ontogenez; 1997; 28(2):106-16. PubMed ID: 9173348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of Gbetagamma signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation.
    Penzo-Mendèz A; Umbhauer M; Djiane A; Boucaut JC; Riou JF
    Dev Biol; 2003 May; 257(2):302-14. PubMed ID: 12729560
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies.
    Dale L; Smith JC; Slack JM
    J Embryol Exp Morphol; 1985 Oct; 89():289-312. PubMed ID: 3912458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of gastrulation: different types of gastrulation movement are induced by different mesoderm-inducing factors in Xenopus laevis.
    Howard JE; Smith JC
    Mech Dev; 1993 Sep; 43(1):37-48. PubMed ID: 8240971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Xbra functions as a switch between cell migration and convergent extension in the Xenopus gastrula.
    Kwan KM; Kirschner MW
    Development; 2003 May; 130(9):1961-72. PubMed ID: 12642499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling.
    Zhang Y; Ding Y; Chen YG; Tao Q
    Dev Biol; 2014 Aug; 392(1):15-25. PubMed ID: 24833518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The E3 ubiquitin ligase Hace1 is required for early embryonic development in Xenopus laevis.
    Iimura A; Yamazaki F; Suzuki T; Endo T; Nishida E; Kusakabe M
    BMC Dev Biol; 2016 Sep; 16(1):31. PubMed ID: 27653971
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Distribution of differentiation potentials and the conditions for their realization in the amphibian neuroectoderm].
    Golubeva ON
    Ontogenez; 1986; 17(6):648-54. PubMed ID: 3822378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in states of commitment of single animal pole blastomeres of Xenopus laevis.
    Snape A; Wylie CC; Smith JC; Heasman J
    Dev Biol; 1987 Feb; 119(2):503-10. PubMed ID: 3803715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium signaling during convergent extension in Xenopus.
    Wallingford JB; Ewald AJ; Harland RM; Fraser SE
    Curr Biol; 2001 May; 11(9):652-61. PubMed ID: 11369228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.