BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21357407)

  • 1. Cellular expression and siRNA-mediated interference of rhodopsin cis-acting splicing mutants associated with autosomal dominant retinitis pigmentosa.
    Hernan I; Gamundi MJ; Planas E; Borràs E; Maseras M; Carballo M
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3723-9. PubMed ID: 21357407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa.
    Mordes D; Yuan L; Xu L; Kawada M; Molday RS; Wu JY
    Neurobiol Dis; 2007 May; 26(2):291-300. PubMed ID: 17350276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells.
    Yuan L; Kawada M; Havlioglu N; Tang H; Wu JY
    J Neurosci; 2005 Jan; 25(3):748-57. PubMed ID: 15659613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling autosomal dominant retinitis pigmentosa by using patient-specific retinal organoids with a class-3 RHO mutation.
    Lin X; Liu ZL; Zhang X; Wang W; Huang ZQ; Sun SN; Jin ZB
    Exp Eye Res; 2024 Apr; 241():109856. PubMed ID: 38479725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of autosomal-dominant retinitis pigmentosa in Caenorhabditis elegans uncovers a nexus between global impaired functioning of certain splicing factors and cell type-specific apoptosis.
    Rubio-Peña K; Fontrodona L; Aristizábal-Corrales D; Torres S; Cornes E; García-Rodríguez FJ; Serrat X; González-Knowles D; Foissac S; Porta-De-La-Riva M; Cerón J
    RNA; 2015 Dec; 21(12):2119-31. PubMed ID: 26490224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disease modeling and pharmacological rescue of autosomal dominant retinitis pigmentosa associated with
    Kandoi S; Martinez C; Chen KX; Mehine M; Reddy LVK; Mansfield BC; Duncan JL; Lamba DA
    Elife; 2024 Apr; 12():. PubMed ID: 38661530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockout and Replacement Gene Surgery to Treat Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa.
    Sun X; Liang C; Chen Y; Cui T; Han J; Dai M; Zhang Y; Zhou Q; Li W
    Hum Gene Ther; 2024 Mar; 35(5-6):151-162. PubMed ID: 38368562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autosomal dominant retinitis pigmentosa rhodopsin mutant Q344X drives specific alterations in chromatin complex gene transcription.
    Bales KL; Ianov L; Kennedy AJ; Sweatt JD; Gross AK
    Mol Vis; 2018; 24():153-164. PubMed ID: 29463953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa.
    Wu WH; Tsai YT; Huang IW; Cheng CH; Hsu CW; Cui X; Ryu J; Quinn PMJ; Caruso SM; Lin CS; Tsang SH
    Mol Ther; 2022 Apr; 30(4):1407-1420. PubMed ID: 35150888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy.
    Athanasiou D; Aguila M; Bellingham J; Li W; McCulley C; Reeves PJ; Cheetham ME
    Prog Retin Eye Res; 2018 Jan; 62():1-23. PubMed ID: 29042326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay.
    Rio Frio T; Wade NM; Ransijn A; Berson EL; Beckmann JS; Rivolta C
    J Clin Invest; 2008 Apr; 118(4):1519-31. PubMed ID: 18317597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of autosomal dominant retinitis pigmentosa caused by RHO-P23H mutation with high-fidelity Cas13X in mice.
    Yan Z; Yao Y; Li L; Cai L; Zhang H; Zhang S; Xiao Q; Wang X; Zuo E; Xu C; Wu J; Yang H
    Mol Ther Nucleic Acids; 2023 Sep; 33():750-761. PubMed ID: 37621413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Misfolded rhodopsin mutants display variable aggregation properties.
    Gragg M; Park PS
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2938-2948. PubMed ID: 29890221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-mRNA splicing and retinitis pigmentosa.
    Mordes D; Luo X; Kar A; Kuo D; Xu L; Fushimi K; Yu G; Sternberg P; Wu JY
    Mol Vis; 2006 Oct; 12():1259-71. PubMed ID: 17110909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant dominant-negative
    Cao B; Dahlen JV; Sen M; Beyer T; Leonhard T; Kilger E; Arango-Gonzalez B; Ueffing M
    Front Mol Biosci; 2024; 11():1369000. PubMed ID: 38828393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotide therapy for proline-23-histidine autosomal dominant retinitis pigmentosa.
    Justin GA; Girach A; Maldonado RS
    Curr Opin Ophthalmol; 2023 May; 34(3):226-231. PubMed ID: 36924362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutation in a splicing factor that causes retinitis pigmentosa has a transcriptome-wide effect on mRNA splicing.
    Korir PK; Roberts L; Ramesar R; Seoighe C
    BMC Res Notes; 2014 Jun; 7():401. PubMed ID: 24969741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes.
    Daich Varela M; Georgiadis A; Michaelides M
    Br J Ophthalmol; 2023 Sep; 107(9):1223-1230. PubMed ID: 36038193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The study of the effect of splicing mutations in von Willebrand factor using RNA isolated from patients' platelets and leukocytes.
    Corrales I; Ramírez L; Altisent C; Parra R; Vidal F
    J Thromb Haemost; 2011 Apr; 9(4):679-88. PubMed ID: 21251206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease modeling and pharmacological rescue of autosomal dominant Retinitis Pigmentosa associated with
    Kandoi S; Martinez C; Chen KX; Reddy LVK; Mehine M; Mansfield BC; Duncan JL; Lamba DA
    medRxiv; 2023 Nov; ():. PubMed ID: 36909455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.