BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21357418)

  • 1. The essential Ubc4/Ubc5 function in yeast is HECT E3-dependent, and RING E3-dependent pathways require only monoubiquitin transfer by Ubc4.
    Stoll KE; Brzovic PS; Davis TN; Klevit RE
    J Biol Chem; 2011 Apr; 286(17):15165-70. PubMed ID: 21357418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin-protein ligase interaction.
    Nuber U; Scheffner M
    J Biol Chem; 1999 Mar; 274(11):7576-82. PubMed ID: 10066826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An E2 accessory domain increases affinity for the anaphase-promoting complex and ensures E2 competition.
    Girard JR; Tenthorey JL; Morgan DO
    J Biol Chem; 2015 Oct; 290(40):24614-25. PubMed ID: 26306044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A major ubiquitin conjugation system in wheat germ extracts involves a 15-kDa ubiquitin-conjugating enzyme (E2) homologous to the yeast UBC4/UBC5 gene products.
    Girod PA; Vierstra RD
    J Biol Chem; 1993 Jan; 268(2):955-60. PubMed ID: 8419375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins.
    Hiraishi H; Okada M; Ohtsu I; Takagi H
    Biosci Biotechnol Biochem; 2009 Oct; 73(10):2268-73. PubMed ID: 19809202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential E2s drive polyubiquitin chain assembly on APC targets.
    Rodrigo-Brenni MC; Morgan DO
    Cell; 2007 Jul; 130(1):127-39. PubMed ID: 17632060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners.
    O'Connor HF; Lyon N; Leung JW; Agarwal P; Swaim CD; Miller KM; Huibregtse JM
    EMBO Rep; 2015 Dec; 16(12):1699-712. PubMed ID: 26508657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes.
    Hiraishi H; Mochizuki M; Takagi H
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2762-5. PubMed ID: 17090950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity.
    Kumar S; Kao WH; Howley PM
    J Biol Chem; 1997 May; 272(21):13548-54. PubMed ID: 9153201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site.
    French ME; Kretzmann BR; Hicke L
    J Biol Chem; 2009 May; 284(18):12071-9. PubMed ID: 19252184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and Characterization of UBC4 Mutants with Single Residues Swapped from UBC5.
    Raimalani V; Panchamia B; Prabha CR
    Cell Biochem Biophys; 2020 Mar; 78(1):43-53. PubMed ID: 31820282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitin-conjugating enzymes, Ubc4 and Cdc34, mediate cadmium resistance in budding yeast through different mechanisms.
    Hwang GW; Furuchi T; Naganuma A
    Life Sci; 2008 Jun; 82(23-24):1182-5. PubMed ID: 18466927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.
    Sadowski M; Suryadinata R; Lai X; Heierhorst J; Sarcevic B
    Mol Cell Biol; 2010 May; 30(10):2316-29. PubMed ID: 20194622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.
    Singh RK; Gonzalez M; Kabbaj MH; Gunjan A
    PLoS One; 2012; 7(5):e36295. PubMed ID: 22570702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the endocytosis and prion-chaperoning machineries by yeast E3 ubiquitin ligase Rsp5 as revealed by orthogonal ubiquitin transfer.
    Wang Y; Fang S; Chen G; Ganti R; Chernova TA; Zhou L; Duong D; Kiyokawa H; Li M; Zhao B; Shcherbik N; Chernoff YO; Yin J
    Cell Chem Biol; 2021 Sep; 28(9):1283-1297.e8. PubMed ID: 33667410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro.
    Kus BM; Caldon CE; Andorn-Broza R; Edwards AM
    Proteins; 2004 Feb; 54(3):455-67. PubMed ID: 14747994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins.
    Seufert W; Jentsch S
    EMBO J; 1990 Feb; 9(2):543-50. PubMed ID: 2154373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII.
    Jiang H; Wolgast M; Beebe LM; Reese JC
    Genes Dev; 2019 Jun; 33(11-12):705-717. PubMed ID: 30948432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex.
    Kamadurai HB; Souphron J; Scott DC; Duda DM; Miller DJ; Stringer D; Piper RC; Schulman BA
    Mol Cell; 2009 Dec; 36(6):1095-102. PubMed ID: 20064473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin chain-elongating enzyme UBE2S activates the RING E3 ligase APC/C for substrate priming.
    Martinez-Chacin RC; Bodrug T; Bolhuis DL; Kedziora KM; Bonacci T; Ordureau A; Gibbs ME; Weissmann F; Qiao R; Grant GD; Cook JG; Peters JM; Wade Harper J; Emanuele MJ; Brown NG
    Nat Struct Mol Biol; 2020 Jun; 27(6):550-560. PubMed ID: 32393902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.