BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21357696)

  • 1. Ca(V)1.2 channel N-terminal splice variants modulate functional surface expression in resistance size artery smooth muscle cells.
    Bannister JP; Thomas-Gatewood CM; Neeb ZP; Adebiyi A; Cheng X; Jaggar JH
    J Biol Chem; 2011 Apr; 286(17):15058-66. PubMed ID: 21357696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smooth muscle cell alpha2delta-1 subunits are essential for vasoregulation by CaV1.2 channels.
    Bannister JP; Adebiyi A; Zhao G; Narayanan D; Thomas CM; Feng JY; Jaggar JH
    Circ Res; 2009 Nov; 105(10):948-55. PubMed ID: 19797702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties.
    Cheng X; Pachuau J; Blaskova E; Asuncion-Chin M; Liu J; Dopico AM; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H680-8. PubMed ID: 19502562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(v)1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter.
    Nystoriak MA; Murakami K; Penar PL; Wellman GC
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1820-8. PubMed ID: 19717733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LRRC26 is a functional BK channel auxiliary γ subunit in arterial smooth muscle cells.
    Evanson KW; Bannister JP; Leo MD; Jaggar JH
    Circ Res; 2014 Aug; 115(4):423-31. PubMed ID: 24906643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth muscle cell transient receptor potential polycystin-2 (TRPP2) channels contribute to the myogenic response in cerebral arteries.
    Narayanan D; Bulley S; Leo MD; Burris SK; Gabrick KS; Boop FA; Jaggar JH
    J Physiol; 2013 Oct; 591(20):5031-46. PubMed ID: 23858011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries.
    Narayanan D; Xi Q; Pfeffer LM; Jaggar JH
    Circ Res; 2010 Sep; 107(5):631-41. PubMed ID: 20616314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The voltage-dependent L-type Ca2+ (CaV1.2) channel C-terminus fragment is a bi-modal vasodilator.
    Bannister JP; Leo MD; Narayanan D; Jangsangthong W; Nair A; Evanson KW; Pachuau J; Gabrick KS; Boop FA; Jaggar JH
    J Physiol; 2013 Jun; 591(12):2987-98. PubMed ID: 23568894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab25 influences functional Cav1.2 channel surface expression in arterial smooth muscle cells.
    Bannister JP; Bulley S; Leo MD; Kidd MW; Jaggar JH
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C885-93. PubMed ID: 27076616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravascular pressure enhances the abundance of functional Kv1.5 channels at the surface of arterial smooth muscle cells.
    Kidd MW; Leo MD; Bannister JP; Jaggar JH
    Sci Signal; 2015 Aug; 8(390):ra83. PubMed ID: 26286025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Ca(V)1.2 N terminus expressed in smooth muscle cells of resistance size arteries modifies channel regulation by auxiliary subunits.
    Cheng X; Liu J; Asuncion-Chin M; Blaskova E; Bannister JP; Dopico AM; Jaggar JH
    J Biol Chem; 2007 Oct; 282(40):29211-21. PubMed ID: 17699517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splice variant specific modulation of CaV1.2 calcium channel by galectin-1 regulates arterial constriction.
    Wang J; Thio SS; Yang SS; Yu D; Yu CY; Wong YP; Liao P; Li S; Soong TW
    Circ Res; 2011 Nov; 109(11):1250-8. PubMed ID: 21998324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel.
    Tian XY; Wong WT; Sayed N; Luo J; Tsang SY; Bian ZX; Lu Y; Cheang WS; Yao X; Chen ZY; Huang Y
    Pharmacol Res; 2012 Feb; 65(2):239-46. PubMed ID: 22133671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development.
    Abd El-Rahman RR; Harraz OF; Brett SE; Anfinogenova Y; Mufti RE; Goldman D; Welsh DG
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(1):H58-71. PubMed ID: 23103495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries.
    Bulley S; Neeb ZP; Burris SK; Bannister JP; Thomas-Gatewood CM; Jangsangthong W; Jaggar JH
    Circ Res; 2012 Sep; 111(8):1027-36. PubMed ID: 22872152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction.
    Leo MD; Bulley S; Bannister JP; Kuruvilla KP; Narayanan D; Jaggar JH
    Am J Physiol Cell Physiol; 2015 Sep; 309(6):C392-402. PubMed ID: 26179602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TMEM16A channel upregulation in arterial smooth muscle cells produces vasoconstriction during diabetes.
    Leo MD; Peixoto-Nieves D; Yin W; Raghavan S; Muralidharan P; Mata-Daboin A; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2021 Mar; 320(3):H1089-H1101. PubMed ID: 33449847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TMEM16A channels generate Ca²⁺-activated Cl⁻ currents in cerebral artery smooth muscle cells.
    Thomas-Gatewood C; Neeb ZP; Bulley S; Adebiyi A; Bannister JP; Leo MD; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H1819-27. PubMed ID: 21856902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional upregulation of α2δ-1 elevates arterial smooth muscle cell voltage-dependent Ca2+ channel surface expression and cerebrovascular constriction in genetic hypertension.
    Bannister JP; Bulley S; Narayanan D; Thomas-Gatewood C; Luzny P; Pachuau J; Jaggar JH
    Hypertension; 2012 Oct; 60(4):1006-15. PubMed ID: 22949532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries.
    Earley S; Waldron BJ; Brayden JE
    Circ Res; 2004 Oct; 95(9):922-9. PubMed ID: 15472118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.