These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21358021)

  • 1. Interlayer diffusion studies of a Laves phase exchange spring superlattice.
    Wang C; Kohn A; Wang SG; Ward RC
    J Phys Condens Matter; 2011 Mar; 23(11):116001. PubMed ID: 21358021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.
    Thomas J; Schumann J; Vinzelberg H; Arushanov E; Engelhard R; Schmidt OG; Gemming T
    Nanotechnology; 2009 Jun; 20(23):235604. PubMed ID: 19451681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-sectional transmission electron microscopic study of irradiation induced nano-crystallization of nickel in a W/Ni multilayer.
    Bagchi S; Lalla NP
    J Phys Condens Matter; 2008 Jun; 20(23):235202. PubMed ID: 21694293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical aspects and structure characterization of VA-VIA compound semiconductor Bi2Te3/Sb2Te3 superlattice thin films via electrochemical atomic layer epitaxy.
    Zhu W; Yang JY; Zhou DX; Xiao CJ; Duan XK
    Langmuir; 2008 Jun; 24(11):5919-24. PubMed ID: 18452317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial oxidation and interfacial diffusion of Zn on faceted MgO(111) films.
    Xue M; Guo Q; Wu K; Guo J
    Langmuir; 2008 Aug; 24(16):8760-4. PubMed ID: 18624420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
    Chang WH; Wu SY; Lee CH; Lai TY; Lee YJ; Chang P; Hsu CH; Huang TS; Kwo JR; Hong M
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1436-41. PubMed ID: 23360590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD).
    Vaidyanathan R; Cox SM; Happek U; Banga D; Mathe MK; Stickney JL
    Langmuir; 2006 Dec; 22(25):10590-5. PubMed ID: 17129034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and chemistry across interfaces at nanoscale of a Ge quantum well embedded within rare earth oxide layers.
    Das T; Bhattacharyya S
    Microsc Microanal; 2011 Oct; 17(5):759-65. PubMed ID: 21729358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.
    Laha A; Bugiel E; Jestremski M; Ranjith R; Fissel A; Osten HJ
    Nanotechnology; 2009 Nov; 20(47):475604. PubMed ID: 19875877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New stacking variant of Laves phase found in (Ti0.95 V0.05) Co2 alloy.
    Kitano Y; Akitoh SI; Mitarai M; Ohnishi K; Kitasaka K; Noguchi K; Numata M
    Microsc Res Tech; 1998 Feb; 40(4):277-83. PubMed ID: 9523761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray reflectivity study of semiconductor interfaces.
    Sanyal MK; Datta A; Banerjee S; Srivastava AK; Arora BM; Kanakaraju S; Mohan S
    J Synchrotron Radiat; 1997 May; 4(Pt 3):185-90. PubMed ID: 16699227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray studies of self-assembled organic monolayers grown on hydrogen-terminated Si(111).
    Jin H; Kinser CR; Bertin PA; Kramer DE; Libera JA; Hersam MC; Nguyen ST; Bedzyk MJ
    Langmuir; 2004 Jul; 20(15):6252-8. PubMed ID: 15248710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices.
    Bauer A; Dallner M; Herrmann A; Lehnhardt T; Kamp M; Höfling S; Worschech L; Forchel A
    Nanotechnology; 2010 Nov; 21(45):455603. PubMed ID: 20947950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray mapping of nanoparticle superlattice thin films.
    Diroll BT; Doan-Nguyen VV; Cargnello M; Gaulding EA; Kagan CR; Murray CB
    ACS Nano; 2014 Dec; 8(12):12843-50. PubMed ID: 25478642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly ordered superlattices from polydisperse Ag nanoparticles: a comparative study of fractionation and self-correction.
    Yang Y; Kimura K
    J Phys Chem B; 2006 Dec; 110(48):24442-9. PubMed ID: 17134199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth kinetics, structure, and morphology of para-quaterphenyl thin films on gold(111).
    Müllegger S; Salzmann I; Resel R; Hlawacek G; Teichert C; Winkler A
    J Chem Phys; 2004 Aug; 121(5):2272-7. PubMed ID: 15260782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of dielectric permittivity of perovskite-type artificial superlattices.
    Kinbara H; Harigai T; Kakemoto H; Wada S; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2541-7. PubMed ID: 18276552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural investigation of highly ordered catalyst- and mask-free GaN nanorods.
    Figge S; Aschenbrenner T; Kruse C; Kunert G; Schowalter M; Rosenauer A; Hommel D
    Nanotechnology; 2011 Jan; 22(2):025603. PubMed ID: 21139192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy.
    Koblmüller G; Hertenberger S; Vizbaras K; Bichler M; Bao F; Zhang JP; Abstreiter G
    Nanotechnology; 2010 Sep; 21(36):365602. PubMed ID: 20702932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rare-earth thin films and superlattices.
    Goff JP
    J Phys Condens Matter; 2020 Jun; 32(37):. PubMed ID: 32189640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.