These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 21358032)

  • 1. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain.
    Peng X; Tang F; Logan P
    J Phys Condens Matter; 2011 Mar; 23(11):115502. PubMed ID: 21358032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducing novel electronic properties in <112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study.
    Zhang C; De Sarkar A; Zhang RQ
    J Phys Condens Matter; 2012 Jan; 24(1):015301. PubMed ID: 22133518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pathway to Type-I Band Alignment in Ge/Si Core-Shell Nanowires.
    Kim J; Lee JH; Hong KH
    J Phys Chem Lett; 2013 Jan; 4(1):121-6. PubMed ID: 26291223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells.
    Pizzi G; Virgilio M; Grosso G
    Nanotechnology; 2010 Feb; 21(5):055202. PubMed ID: 20023310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction that uniaxial tension along <111> produces a direct band gap in germanium.
    Zhang F; Crespi VH; Zhang P
    Phys Rev Lett; 2009 Apr; 102(15):156401. PubMed ID: 19518657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin splitting modulated by uniaxial stress in InAs nanowires.
    Liu G; Chen Y; Jia C; Hao GD; Wang Z
    J Phys Condens Matter; 2011 Jan; 23(1):015801. PubMed ID: 21406826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires.
    Zhu Z; Song Y; Chen Q; Zhang Z; Zhang L; Li Y; Wang S
    Nanoscale Res Lett; 2017 Dec; 12(1):472. PubMed ID: 28759987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires.
    Zhang H; Li Y; Tang Q; Liu L; Zhou Z
    Nanoscale; 2012 Feb; 4(4):1078-84. PubMed ID: 21881662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete Separation of Carriers in the GeS/SnS Lateral Heterostructure by Uniaxial Tensile Strain.
    Peng L; Wang C; Qian Q; Bi C; Wang S; Huang Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40969-40977. PubMed ID: 29083148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
    Ni ZH; Yu T; Lu YH; Wang YY; Feng YP; Shen ZX
    ACS Nano; 2008 Nov; 2(11):2301-5. PubMed ID: 19206396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defects responsible for the hole gas in Ge/Si core-shell nanowires.
    Park JS; Ryu B; Moon CY; Chang KJ
    Nano Lett; 2010 Jan; 10(1):116-21. PubMed ID: 20017562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and electronic properties of Al12X+ (X=C, Si, Ge, Sn, and Pb) clusters.
    Chen G; Kawazoe Y
    J Chem Phys; 2007 Jan; 126(1):014703. PubMed ID: 17212507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.
    Hu T; Han Y; Dong J
    Nanotechnology; 2014 Nov; 25(45):455703. PubMed ID: 25333269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-loss near-edge structure (ELNES) and first-principles calculation of electronic structure of nickel silicide systems.
    Kawasaki N; Sugiyama N; Otsuka Y; Hashimoto H; Tsujimoto M; Kurata H; Isoda S
    Ultramicroscopy; 2008 Apr; 108(5):399-406. PubMed ID: 17697750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and electronic properties of diamond nanowires under tensile strain from first principles.
    Jiang X; Zhao J; Jiang X
    Nanotechnology; 2011 Oct; 22(40):405705. PubMed ID: 21911933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic design of strong direct-gap optical transition in Si/Ge core/multishell nanowires.
    Zhang L; d'Avezac M; Luo JW; Zunger A
    Nano Lett; 2012 Feb; 12(2):984-91. PubMed ID: 22216831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent optical absorption modulation of Si/Ge and Ge/Si core/shell nanowires with different cross-sectional geometries.
    Luo S; Yu WB; He Y; Ouyang G
    Nanotechnology; 2015 Feb; 26(8):085702. PubMed ID: 25649268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First principles study of Si-doped BC2N nanotubes.
    Rupp CJ; Rossato J; Baierle RJ
    J Chem Phys; 2009 Mar; 130(11):114710. PubMed ID: 19317558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.