These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 21358469)
1. The effects of three different types of orthoses on the range of motion of the lumbar spine during 15 activities of daily living. Jegede KA; Miller CP; Bible JE; Whang PG; Grauer JN Spine (Phila Pa 1976); 2011 Dec; 36(26):2346-53. PubMed ID: 21358469 [TBL] [Abstract][Full Text] [Related]
2. Soft and rigid collars provide similar restriction in cervical range of motion during fifteen activities of daily living. Miller CP; Bible JE; Jegede KA; Whang PG; Grauer JN Spine (Phila Pa 1976); 2010 Jun; 35(13):1271-8. PubMed ID: 20512025 [TBL] [Abstract][Full Text] [Related]
3. Normal functional range of motion of the lumbar spine during 15 activities of daily living. Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN J Spinal Disord Tech; 2010 Apr; 23(2):106-12. PubMed ID: 20065869 [TBL] [Abstract][Full Text] [Related]
4. Effect of 2 different thoracolumbar orthoses on the stability of the spine during various body movements. Kienle A; Saidi S; Oberst M Spine (Phila Pa 1976); 2013 Aug; 38(17):E1082-9. PubMed ID: 23644685 [TBL] [Abstract][Full Text] [Related]
5. Comparison of three lumbar orthoses using motion assessment during task performance. Krag MH; Fox MS J; Haugh LD Spine (Phila Pa 1976); 2003 Oct; 28(20):2359-67. PubMed ID: 14560084 [TBL] [Abstract][Full Text] [Related]
6. Normal functional range of motion of the cervical spine during 15 activities of daily living. Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN J Spinal Disord Tech; 2010 Feb; 23(1):15-21. PubMed ID: 20051924 [TBL] [Abstract][Full Text] [Related]
7. Active cervical and lumbar range of motion during performance of activities of daily living in healthy young adults. Cobian DG; Daehn NS; Anderson PA; Heiderscheit BC Spine (Phila Pa 1976); 2013 Sep; 38(20):1754-63. PubMed ID: 23823575 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of Thoracolumbar Bracing in Spinal Immobilization: Precise Assessment of Gross, Intersegmental, and Segmental Spinal Motion Restriction by a 3D Kinematic System. Lang G; Hirschmüller A; Patermann S; Eichelberger P; Strohm P; Baur H; Südkamp NP; Herget GW World Neurosurg; 2018 Aug; 116():e128-e146. PubMed ID: 29729467 [TBL] [Abstract][Full Text] [Related]
9. Quantifying the lumbar flexion-relaxation phenomenon: theory, normative data, and clinical applications. Neblett R; Mayer TG; Gatchel RJ; Keeley J; Proctor T; Anagnostis C Spine (Phila Pa 1976); 2003 Jul; 28(13):1435-46. PubMed ID: 12838103 [TBL] [Abstract][Full Text] [Related]
10. Assessing range of motion to evaluate the adverse effects of ill-fitting cervical orthoses. Bell KM; Frazier EC; Shively CM; Hartman RA; Ulibarri JC; Lee JY; Kang JD; Donaldson WF Spine J; 2009 Mar; 9(3):225-31. PubMed ID: 18504164 [TBL] [Abstract][Full Text] [Related]
11. Video fluoroscopic analysis of the effects of three commonly-prescribed off-the-shelf orthoses on vertebral motion. Utter A; Anderson ML; Cunniff JG; Kaufman KR; Jelsing EJ; Patrick TA; Magnuson DJ; Maus TP; Yaszemski MJ; Basford JR Spine (Phila Pa 1976); 2010 May; 35(12):E525-9. PubMed ID: 20445478 [TBL] [Abstract][Full Text] [Related]
12. Lumbar spine stabilization with a thoracolumbosacral orthosis: evaluation with video fluoroscopy. Vander Kooi D; Abad G; Basford JR; Maus TP; Yaszemski MJ; Kaufman KR Spine (Phila Pa 1976); 2004 Jan; 29(1):100-4. PubMed ID: 14699284 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of 2-column thoracolumbar fractures with orthoses: a cadaver model. Rubery PT; Brown R; Prasarn M; Small J; Conrad B; Horodyski M; Rechtine G Spine (Phila Pa 1976); 2013 Mar; 38(5):E270-5. PubMed ID: 23211532 [TBL] [Abstract][Full Text] [Related]
14. Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments. Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Renner SM; Rosler DM; Ochoa JA; Patwardhan AG Spine J; 2009; 9(1):96-102. PubMed ID: 18440280 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional spinal motion measurements. Part 2: A noninvasive assessment of lumbar brace immobilization of the spine. Buchalter D; Kahanovitz N; Viola K; Dorsky S; Nordin M J Spinal Disord; 1988; 1(4):284-6. PubMed ID: 2980256 [TBL] [Abstract][Full Text] [Related]
17. Range of motion of the lumbar spine required for four activities of daily living. Hsieh CY; Pringle RK J Manipulative Physiol Ther; 1994; 17(6):353-8. PubMed ID: 7964194 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. Tzermiadianos MN; Mekhail A; Voronov LI; Zook J; Havey RM; Renner SM; Carandang G; Abjornson C; Patwardhan AG Spine (Phila Pa 1976); 2008 Jan; 33(2):E38-43. PubMed ID: 18197089 [TBL] [Abstract][Full Text] [Related]
20. Intraobserver and interobserver reliability of asymptomatic subjects' thoracolumbar range of motion using the OSI CA 6000 Spine Motion Analyzer. Petersen CM; Johnson RD; Schuit D; Hayes KW J Orthop Sports Phys Ther; 1994 Oct; 20(4):207-12. PubMed ID: 7987381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]