These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 21359275)
21. High-efficiency palladium catalysts supported on ppy-modified C60 for formic acid oxidation. Bai Z; Yang L; Guo Y; Zheng Z; Hu C; Xu P Chem Commun (Camb); 2011 Feb; 47(6):1752-4. PubMed ID: 21125109 [TBL] [Abstract][Full Text] [Related]
22. Interfacial Pd-O-Ce Linkage Enhancement Boosting Formic Acid Electrooxidation. Zhou Y; Liu D; Liu Z; Feng L; Yang J ACS Appl Mater Interfaces; 2020 Oct; 12(41):47065-47075. PubMed ID: 33006468 [TBL] [Abstract][Full Text] [Related]
23. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Burch R Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264 [TBL] [Abstract][Full Text] [Related]
25. Highly durable Pd metal catalysts for the oxygen reduction reaction in fuel cells; coverage of Pd metal with silica. Takenaka S; Susuki N; Miyamoto H; Tanabe E; Matsune H; Kishida M Chem Commun (Camb); 2010 Dec; 46(47):8950-2. PubMed ID: 20976331 [TBL] [Abstract][Full Text] [Related]
26. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a time-resolved surface-enhanced infrared study. Samjeské G; Miki A; Ye S; Yamakata A; Mukouyama Y; Okamoto H; Osawa M J Phys Chem B; 2005 Dec; 109(49):23509-16. PubMed ID: 16375325 [TBL] [Abstract][Full Text] [Related]
27. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface. Casado-Rivera E; Gál Z; Angelo AC; Lind C; DiSalvo FJ; Abruña HD Chemphyschem; 2003 Feb; 4(2):193-9. PubMed ID: 12619419 [TBL] [Abstract][Full Text] [Related]
28. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a mathematical modeling and simulation. Mukouyama Y; Kikuchi M; Samjeské G; Osawa M; Okamoto H J Phys Chem B; 2006 Jun; 110(24):11912-7. PubMed ID: 16800494 [TBL] [Abstract][Full Text] [Related]
29. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid. Assaud L; Monyoncho E; Pitzschel K; Allagui A; Petit M; Hanbücken M; Baranova EA; Santinacci L Beilstein J Nanotechnol; 2014; 5():162-72. PubMed ID: 24605281 [TBL] [Abstract][Full Text] [Related]
30. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Dimitratos N; Lopez-Sanchez JA; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Bethell D; Hutchings GJ Phys Chem Chem Phys; 2009 Jul; 11(25):5142-53. PubMed ID: 19562147 [TBL] [Abstract][Full Text] [Related]
31. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces. Yu WY; Mullen GM; Flaherty DW; Mullins CB J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609 [TBL] [Abstract][Full Text] [Related]
32. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. Samjeské G; Miki A; Ye S; Osawa M J Phys Chem B; 2006 Aug; 110(33):16559-66. PubMed ID: 16913790 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous in situ generation of hydrogen peroxide and Fenton reaction over Pd-Fe catalysts. Yalfani MS; Contreras S; Llorca J; Dominguez M; Sueiras JE; Medina F Phys Chem Chem Phys; 2010 Nov; 12(44):14673-6. PubMed ID: 20944839 [TBL] [Abstract][Full Text] [Related]
34. [In situ time-resolved FTIR studies of HCOOH oxidation on Pt(100)/Sb electrodes]. Yang Y; Wu Q; Zhou Z; Zheng M; Chen S; Sun S Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Dec; 20(6):765-7. PubMed ID: 12938462 [TBL] [Abstract][Full Text] [Related]
35. Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. Zhang LY; Gong Y; Wu D; Wu G; Xu B; Bi L; Yuan W; Cui Z J Colloid Interface Sci; 2019 Mar; 537():366-374. PubMed ID: 30453230 [TBL] [Abstract][Full Text] [Related]
37. Evolution of the PVP-Pd Surface Interaction in Nanoparticles through the Case Study of Formic Acid Decomposition. García-Aguilar J; Navlani-García M; Berenguer-Murcia Á; Mori K; Kuwahara Y; Yamashita H; Cazorla-Amorós D Langmuir; 2016 Nov; 32(46):12110-12118. PubMed ID: 27788005 [TBL] [Abstract][Full Text] [Related]
38. Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes. Wang D; Lu S; Kulesza PJ; Li CM; De Marco R; Jiang SP Phys Chem Chem Phys; 2011 Mar; 13(10):4400-10. PubMed ID: 21249246 [TBL] [Abstract][Full Text] [Related]
39. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. Wang AL; Xu H; Feng JX; Ding LX; Tong YX; Li GR J Am Chem Soc; 2013 Jul; 135(29):10703-9. PubMed ID: 23837995 [TBL] [Abstract][Full Text] [Related]
40. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]