These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21359427)

  • 21. Optimal techniques for magnetic resonance imaging of the liver using a respiratory navigator-gated three-dimensional spoiled gradient-recalled echo sequence.
    Inoue Y; Hata H; Nakajima A; Iwadate Y; Ogasawara G; Matsunaga K
    Magn Reson Imaging; 2014 Oct; 32(8):975-80. PubMed ID: 24960368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Racemose neurocysticercosis.
    Saini AG; Vyas S; Singhi P
    J Infect Public Health; 2017; 10(6):884-885. PubMed ID: 28233725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic tibiofibular syndesmosis injury of ankle: evaluation with contrast-enhanced fat-suppressed 3D fast spoiled gradient-recalled acquisition in the steady state MR imaging.
    Kim S; Huh YM; Song HT; Lee SA; Lee JW; Lee JE; Chung IH; Suh JS
    Radiology; 2007 Jan; 242(1):225-35. PubMed ID: 17185669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of conventional MR imaging sequences in the evaluation of neurocysticercosis: impact on characterization of the scolex and lesion burden.
    Lucato LT; Guedes MS; Sato JR; Bacheschi LA; Machado LR; Leite CC
    AJNR Am J Neuroradiol; 2007 Sep; 28(8):1501-4. PubMed ID: 17846200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging of the articular cartilage in osteoarthritis of the knee joint: 3D spatial-spectral spoiled gradient-echo vs. fat-suppressed 3D spoiled gradient-echo MR imaging.
    Yoshioka H; Alley M; Steines D; Stevens K; Rubesova E; Genovese M; Dillingham MF; Lang P
    J Magn Reson Imaging; 2003 Jul; 18(1):66-71. PubMed ID: 12815641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of FSE T2 W PROPELLER and 3D-FIESTA of 3 T MR for the internal auditory canal.
    Wu HB; Yuan HS; Ma F; Zhao Q
    Clin Imaging; 2017; 45():30-33. PubMed ID: 28595058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MR imaging of neurocysticercosis.
    Teitelbaum GP; Otto RJ; Lin M; Watanabe AT; Stull MA; Manz HJ; Bradley WG
    AJR Am J Roentgenol; 1989 Oct; 153(4):857-66. PubMed ID: 2773743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlative MR imaging and histopathology in porcine neurocysticercosis.
    Chawla S; Husain N; Kumar S; Pal L; Tripathi M; Gupta RK
    J Magn Reson Imaging; 2004 Aug; 20(2):208-15. PubMed ID: 15269945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ununsual manifestations of neurocysticercosis in MR imaging: analysis of 172 cases.
    Amaral L; Maschietto M; Maschietto R; Cury R; Ferreira NF; Mendonça R; Lima SS
    Arq Neuropsiquiatr; 2003 Sep; 61(3A):533-41. PubMed ID: 14513153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The rotating stretched curved planar reconstruction of 3D-FIESTA MR imaging for evaluating the anterior cruciate ligament of the knee joint.
    Zhang J; Hao D; Duan F; Yu T; Zhang C; Che J
    Magn Reson Imaging; 2019 Jan; 55():46-51. PubMed ID: 30223006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Added value of 3D-DRIVE and SWI Magnetic Resonance Imaging Sequences in Intraventricular Neurocysticercosis (IVNCC): An Institutional Experience from Northeast India.
    Boruah DK; Bikash Gogoi B; Das KK; Sarma K; Phukan P; Singh BK; Hazarika K; Jaiswal A
    Acta Med Litu; 2021; 28(2):285-297. PubMed ID: 35474928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional fast imaging employing steady-state acquisition (FIESTA) cine acquisition of fetal non-central nervous system abnormalities.
    Shen SH; Guo WY; Hung JH
    J Magn Reson Imaging; 2007 Sep; 26(3):672-7. PubMed ID: 17729346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imaging features and surgery-related outcomes in intraventricular neurocysticercosis.
    Citow JS; Johnson JP; McBride DQ; Ammirati M
    Neurosurg Focus; 2002 Jun; 12(6):e6. PubMed ID: 15926785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy.
    Disler DG; McCauley TR; Wirth CR; Fuchs MD
    AJR Am J Roentgenol; 1995 Aug; 165(2):377-82. PubMed ID: 7618561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Usefulness of non-contrast MRI three dimensional brain surface imaging using a T(2) weighted image.
    Iwata N; Kamitani H; Yamashita E; Hirata Y
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2010 Apr; 66(4):363-70. PubMed ID: 20625223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy.
    Yoshioka H; Stevens K; Hargreaves BA; Steines D; Genovese M; Dillingham MF; Winalski CS; Lang P
    J Magn Reson Imaging; 2004 Nov; 20(5):857-64. PubMed ID: 15503323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical usefulness of adding 3D cartilage imaging sequences to a routine knee MR protocol.
    Kijowski R; Blankenbaker DG; Woods M; Del Rio AM; De Smet AA; Reeder SB
    AJR Am J Roentgenol; 2011 Jan; 196(1):159-67. PubMed ID: 21178062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fat-suppressed spoiled GRASS imaging of knee hyaline cartilage: technique optimization and comparison with conventional MR imaging.
    Disler DG; Peters TL; Muscoreil SJ; Ratner LM; Wagle WA; Cousins JP; Rifkin MD
    AJR Am J Roentgenol; 1994 Oct; 163(4):887-92. PubMed ID: 8092029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MR imaging of peritoneal disease: comparison of contrast-enhanced fast multiplanar spoiled gradient-recalled and spin-echo imaging.
    Low RN; Sigeti JS
    AJR Am J Roentgenol; 1994 Nov; 163(5):1131-40. PubMed ID: 7976889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of Peritumoral Brain Parenchyma Using Contrast-Enhanced 3D Fast Imaging Employing Steady-State Acquisition at 3T for Differentiating Metastatic Brain Tumors and Glioblastomas.
    Yamamoto J; Kakeda S; Shimajiri S; Nakano Y; Saito T; Ide S; Moriya J; Korogi Y; Nishizawa S
    World Neurosurg; 2018 Dec; 120():e719-e729. PubMed ID: 30165229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.