These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21359640)

  • 21. Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase.
    Neckles C; Eltschkner S; Cummings JE; Hirschbeck M; Daryaee F; Bommineni GR; Zhang Z; Spagnuolo L; Yu W; Davoodi S; Slayden RA; Kisker C; Tonge PJ
    Biochemistry; 2017 Apr; 56(13):1865-1878. PubMed ID: 28225601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New molecular interaction of IIA(Ntr) and HPr from Burkholderia pseudomallei identified by X-ray crystallography and docking studies.
    Kim MS; Lee H; Heo L; Lim A; Seok C; Shin DH
    Proteins; 2013 Sep; 81(9):1499-508. PubMed ID: 23483653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening.
    Begley DW; Davies DR; Hartley RC; Hewitt SN; Rychel AL; Myler PJ; Van Voorhis WC; Staker BL; Stewart LJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Sep; 67(Pt 9):1060-9. PubMed ID: 21904051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK.
    Gourlay LJ; Thomas RJ; Peri C; Conchillo-Solé O; Ferrer-Navarro M; Nithichanon A; Vila J; Daura X; Lertmemongkolchai G; Titball R; Colombo G; Bolognesi M
    FEBS J; 2015 Apr; 282(7):1319-33. PubMed ID: 25645451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of IspF from
    Liu Z; Jin Y; Liu W; Tao Y; Wang G
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29335298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of phosphopantetheine adenylyltransferase from Burkholderia pseudomallei.
    Edwards TE; Leibly DJ; Bhandari J; Statnekov JB; Phan I; Dieterich SH; Abendroth J; Staker BL; Van Voorhis WC; Myler PJ; Stewart LJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Sep; 67(Pt 9):1032-7. PubMed ID: 21904046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anion inhibition profiles of the γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei responsible of melioidosis and highly drug resistant to common antibiotics.
    Del Prete S; Vullo D; Di Fonzo P; Osman SM; AlOthman Z; Supuran CT; Capasso C
    Bioorg Med Chem; 2017 Jan; 25(2):575-580. PubMed ID: 27914949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and biophysical characterization of the Burkholderia pseudomallei IspF inhibitor L-tryptophan hydroxamate.
    Blain JM; Grote DL; Watkins SM; Goshu GM; Muller C; Gorman JL; Ranieri G; Walter RL; Hofstetter H; Horn JR; Hagen TJ
    Bioorg Med Chem Lett; 2021 Sep; 48():128273. PubMed ID: 34298132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of D-glycero-Β-D-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei.
    Park J; Kim H; Kim S; Lee D; Kim MS; Shin DH
    Proteins; 2018 Jan; 86(1):124-131. PubMed ID: 28986923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei.
    Kim MS; Shin DH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Nov; 65(Pt 11):1110-2. PubMed ID: 19923728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Counting on Fragment Based Drug Design Approach for Drug Discovery.
    Kashyap A; Singh PK; Silakari O
    Curr Top Med Chem; 2018; 18(27):2284-2293. PubMed ID: 30499406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of the c-di-AMP-synthesizing enzyme CdaA.
    Heidemann JL; Neumann P; Dickmanns A; Ficner R
    J Biol Chem; 2019 Jul; 294(27):10463-10470. PubMed ID: 31118276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and mechanism of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. An enzyme in the mevalonate-independent isoprenoid biosynthetic pathway.
    Richard SB; Ferrer JL; Bowman ME; Lillo AM; Tetzlaff CN; Cane DE; Noel JP
    J Biol Chem; 2002 Mar; 277(10):8667-72. PubMed ID: 11786530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms.
    Moen SO; Edwards TE; Dranow DM; Clifton MC; Sankaran B; Van Voorhis WC; Sharma A; Manoil C; Staker BL; Myler PJ; Lorimer DD
    Sci Rep; 2017 Mar; 7(1):223. PubMed ID: 28303005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A structural biology approach enables the development of antimicrobials targeting bacterial immunophilins.
    Begley DW; Fox D; Jenner D; Juli C; Pierce PG; Abendroth J; Muruthi M; Safford K; Anderson V; Atkins K; Barnes SR; Moen SO; Raymond AC; Stacy R; Myler PJ; Staker BL; Harmer NJ; Norville IH; Holzgrabe U; Sarkar-Tyson M; Edwards TE; Lorimer DD
    Antimicrob Agents Chemother; 2014; 58(3):1458-67. PubMed ID: 24366729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.
    Quilici G; Berardi A; Gaudesi D; Gourlay LJ; Bolognesi M; Musco G
    Biomol NMR Assign; 2015 Oct; 9(2):347-50. PubMed ID: 25893672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery.
    Buetow L; Brown AC; Parish T; Hunter WN
    BMC Struct Biol; 2007 Oct; 7():68. PubMed ID: 17956607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids.
    Steinbacher S; Kaiser J; Wungsintaweekul J; Hecht S; Eisenreich W; Gerhardt S; Bacher A; Rohdich F
    J Mol Biol; 2002 Feb; 316(1):79-88. PubMed ID: 11829504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles for Arg426 and Trp111 in the modulation of NADH oxidase activity of the catalase-peroxidase KatG from Burkholderia pseudomallei inferred from pH-induced structural changes.
    Carpena X; Wiseman B; Deemagarn T; Herguedas B; Ivancich A; Singh R; Loewen PC; Fita I
    Biochemistry; 2006 Apr; 45(16):5171-9. PubMed ID: 16618106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional Diversity of Cytotoxic tRNase/Immunity Protein Complexes from Burkholderia pseudomallei.
    Johnson PM; Gucinski GC; Garza-Sánchez F; Wong T; Hung LW; Hayes CS; Goulding CW
    J Biol Chem; 2016 Sep; 291(37):19387-400. PubMed ID: 27445337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.