These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21359813)

  • 1. Laser microdissection of plant-fungus interaction sites and isolation of RNA for downstream expression profiling.
    Chandran D; Inada N; Wildermuth MC
    Methods Mol Biol; 2011; 712():241-62. PubMed ID: 21359813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global expression profiling of RNA from laser microdissected cells at fungal-plant interaction sites.
    Chandran D; Hather G; Wildermuth MC
    Methods Mol Biol; 2011; 712():263-81. PubMed ID: 21359814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators.
    Chandran D; Inada N; Hather G; Kleindt CK; Wildermuth MC
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):460-5. PubMed ID: 20018666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction.
    Chandran D; Rickert J; Cherk C; Dotson BR; Wildermuth MC
    Mol Plant Microbe Interact; 2013 May; 26(5):537-45. PubMed ID: 23301616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling.
    Cai S; Lashbrook CC
    Plant J; 2006 Nov; 48(4):628-37. PubMed ID: 17026538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.
    Pandey SP; Roccaro M; Schön M; Logemann E; Somssich IE
    Plant J; 2010 Dec; 64(6):912-23. PubMed ID: 21143673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria.
    Micali CO; Neumann U; Grunewald D; Panstruga R; O'Connell R
    Cell Microbiol; 2011 Feb; 13(2):210-26. PubMed ID: 20880355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus.
    Inada N; Higaki T; Hasezawa S
    Plant Physiol; 2016 Mar; 170(3):1420-34. PubMed ID: 26747284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell laser-capture microdissection and RNA amplification.
    Kamme F; Zhu J; Luo L; Yu J; Tran DT; Meurers B; Bittner A; Westlund K; Carlton S; Wan J
    Methods Mol Med; 2004; 99():215-23. PubMed ID: 15131340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of laser microdissection to profiling fungal pathogen gene expression in planta.
    Tang WH; Zhang Y; Duvick J
    Methods Mol Biol; 2012; 835():219-36. PubMed ID: 22183657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of fungal infection structures from plant tissue by flow cytometry for cell-specific transcriptome analysis.
    Takahara H; Endl E; O'Connell R
    Methods Mol Biol; 2011; 729():3-13. PubMed ID: 21365480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola.
    Tang W; Coughlan S; Crane E; Beatty M; Duvick J
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1240-50. PubMed ID: 17073306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analyses on dynamic changes in the organization of host Arabidopsis thaliana actin microfilaments surrounding the infection organ of the powdery mildew fungus Golovinomyces orontii.
    Inada N; Higaki T; Hasezawa S
    J Plant Res; 2016 Jan; 129(1):103-110. PubMed ID: 26646379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-capture microdissection of developing barley seeds and cDNA array analysis of selected tissues.
    Thiel J; Weier D; Weschke W
    Methods Mol Biol; 2011; 755():461-75. PubMed ID: 21761328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of laser microdissection to study phytoplasma site-specific gene expression in the model plant Arabidopsis thaliana.
    Rossi M; Pesando M; Vallino M; Galetto L; Marzachì C; Balestrini R
    Microbiol Res; 2018 Dec; 217():60-68. PubMed ID: 30384909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser microdissection of paraffin-embedded plant tissues for transcript profiling.
    Day RC
    Methods Mol Biol; 2010; 655():321-46. PubMed ID: 20734271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing.
    Weßling R; Schmidt SM; Micali CO; Knaust F; Reinhardt R; Neumann U; Ver Loren van Themaat E; Panstruga R
    Fungal Genet Biol; 2012 Jun; 49(6):470-82. PubMed ID: 22521876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser capture microdissection technology.
    Espina V; Heiby M; Pierobon M; Liotta LA
    Expert Rev Mol Diagn; 2007 Sep; 7(5):647-57. PubMed ID: 17892370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser capture microdissection of nematode feeding cells.
    Ithal N; Mitchum MG
    Methods Mol Biol; 2011; 712():227-40. PubMed ID: 21359812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global gene expression profiling: a complement to conventional histopathologic analysis of neoplasia.
    Nambiar PR; Boutin SR; Raja R; Rosenberg DW
    Vet Pathol; 2005 Nov; 42(6):735-52. PubMed ID: 16301570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.