BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21359959)

  • 1. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.
    Heyno E; Mary V; Schopfer P; Krieger-Liszkay A
    Planta; 2011 Jul; 234(1):35-45. PubMed ID: 21359959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth.
    Liszkay A; Kenk B; Schopfer P
    Planta; 2003 Aug; 217(4):658-67. PubMed ID: 12739149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen radicals produced by plant plasma membranes: an EPR spin-trap study.
    Mojović M; Vuletić M; Bacić GG; Vucinić Z
    J Exp Bot; 2004 Dec; 55(408):2523-31. PubMed ID: 15448175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth.
    Liszkay A; van der Zalm E; Schopfer P
    Plant Physiol; 2004 Oct; 136(2):3114-23; discussion 3001. PubMed ID: 15466236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase.
    Heyno E; Klose C; Krieger-Liszkay A
    New Phytol; 2008; 179(3):687-699. PubMed ID: 18537884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysaccharide degradation by Fenton reaction--or peroxidase-generated hydroxyl radicals in isolated plant cell walls.
    Schweikert C; Liszkay A; Schopfer P
    Phytochemistry; 2002 Sep; 61(1):31-5. PubMed ID: 12165299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that hydroxyl radicals mediate auxin-induced extension growth.
    Schopfer P; Liszkay A; Bechtold M; Frahry G; Wagner A
    Planta; 2002 Apr; 214(6):821-8. PubMed ID: 11941457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.
    Kukavica B; Mojovic M; Vuccinic Z; Maksimovic V; Takahama U; Jovanovic SV
    Plant Cell Physiol; 2009 Feb; 50(2):304-17. PubMed ID: 19098072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.
    Biniek C; Heyno E; Kruk J; Sparla F; Trost P; Krieger-Liszkay A
    Planta; 2017 Apr; 245(4):807-817. PubMed ID: 28032259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane-generated reactive oxygen intermediates and their role in cell growth of plants.
    Schopfer P; Liszkay A
    Biofactors; 2006; 28(2):73-81. PubMed ID: 17379938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.
    Jiang M; Zhang J
    Plant Cell Physiol; 2001 Nov; 42(11):1265-73. PubMed ID: 11726712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orchestration of Cu-Zn SOD and class III peroxidase with upstream interplay between NADPH oxidase and PM H
    Majumdar A; Kar RK
    J Plant Physiol; 2019 Jan; 232():248-256. PubMed ID: 30537611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings.
    Causin HF; Roqueiro G; Petrillo E; Láinez V; Pena LB; Marchetti CF; Gallego SM; Maldonado SI
    Plant Sci; 2012 Feb; 183():197-205. PubMed ID: 22195594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum stress increases carbon-centered radicals in soybean roots.
    Abo M; Yonehara H; Yoshimura E
    J Plant Physiol; 2010 Oct; 167(15):1316-9. PubMed ID: 20493580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms and functions of the oxygen radicals producing respiration of phagocytes.
    Rossi F; Della Bianca V; de Togni P
    Comp Immunol Microbiol Infect Dis; 1985; 8(2):187-204. PubMed ID: 3002714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth.
    Müller K; Linkies A; Vreeburg RA; Fry SC; Krieger-Liszkay A; Leubner-Metzger G
    Plant Physiol; 2009 Aug; 150(4):1855-65. PubMed ID: 19493972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical generation by photosystem II.
    Pospísil P; Arató A; Krieger-Liszkay A; Rutherford AW
    Biochemistry; 2004 Jun; 43(21):6783-92. PubMed ID: 15157112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Menadione-induced oxidative stress in bovine heart microvascular endothelial cells.
    Kossenjans W; Rymaszewski Z; Barankiewicz J; Bobst A; Ashraf M
    Microcirculation; 1996 Mar; 3(1):39-47. PubMed ID: 8846270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots.
    Gomes BR; Siqueira-Soares Rde C; Dos Santos WD; Marchiosi R; Soares AR; Ferrarese-Filho O
    Plant Signal Behav; 2014; 9(12):e977704. PubMed ID: 25482756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.