BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21360561)

  • 41. Lobe-specific proteome changes in the dorsal-lateral and ventral prostate of TRAMP mice versus wild-type mice.
    Zhang J; Wang L; Zhang Y; Li L; Higgins L; Lü J
    Proteomics; 2011 Jun; 11(12):2542-9. PubMed ID: 21598396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bcl-2 accelerates multistep prostate carcinogenesis in vivo.
    Bruckheimer EM; Brisbay S; Johnson DJ; Gingrich JR; Greenberg N; McDonnell TJ
    Oncogene; 2000 Nov; 19(46):5251-8. PubMed ID: 11077442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA).
    Lee SO; Yeon Chun J; Nadiminty N; Trump DL; Ip C; Dong Y; Gao AC
    Prostate; 2006 Jul; 66(10):1070-5. PubMed ID: 16637076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemopreventive effect of Korean Angelica root extract on TRAMP carcinogenesis and integrative "omic" profiling of affected neuroendocrine carcinomas.
    Zhang J; Wang L; Zhang Y; Li L; Tang S; Xing C; Kim SH; Jiang C; Lü J
    Mol Carcinog; 2015 Dec; 54(12):1567-83. PubMed ID: 25307620
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.
    Haram KM; Peltier HJ; Lu B; Bhasin M; Otu HH; Choy B; Regan M; Libermann TA; Latham GJ; Sanda MG; Arredouani MS
    Prostate; 2008 Oct; 68(14):1517-30. PubMed ID: 18668517
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene expression signatures associated with suppression of TRAMP prostate carcinogenesis by a kavalactone-rich Kava fraction.
    Tang SN; Zhang J; Jiang P; Datta P; Leitzman P; O'Sullivan MG; Jiang C; Xing C; Lü J
    Mol Carcinog; 2016 Dec; 55(12):2291-2303. PubMed ID: 26840761
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SIRT1 is significantly elevated in mouse and human prostate cancer.
    Huffman DM; Grizzle WE; Bamman MM; Kim JS; Eltoum IA; Elgavish A; Nagy TR
    Cancer Res; 2007 Jul; 67(14):6612-8. PubMed ID: 17638871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epithelial-stromal tumor of the seminal vesicles in the transgenic adenocarcinoma mouse prostate model.
    Tani Y; Suttie A; Flake GP; Nyska A; Maronpot RR
    Vet Pathol; 2005 May; 42(3):306-14. PubMed ID: 15872376
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Divergent effects of castration on prostate cancer in TRAMP mice: possible implications for therapy.
    Tang Y; Wang L; Goloubeva O; Khan MA; Zhang B; Hussain A
    Clin Cancer Res; 2008 May; 14(10):2936-43. PubMed ID: 18483360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interception Targets of
    Tang SN; Jiang P; Kim S; Zhang J; Jiang C; Lü J
    Cancer Prev Res (Phila); 2021 Jun; 14(6):635-648. PubMed ID: 33648943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of sustained antiangiogenic therapy in multistage prostate cancer in TRAMP model.
    Isayeva T; Chanda D; Kallman L; Eltoum IE; Ponnazhagan S
    Cancer Res; 2007 Jun; 67(12):5789-97. PubMed ID: 17575146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genistein alters growth factor signaling in transgenic prostate model (TRAMP).
    Wang J; Eltoum IE; Lamartiniere CA
    Mol Cell Endocrinol; 2004 Apr; 219(1-2):171-80. PubMed ID: 15149738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers.
    Pittoni P; Tripodo C; Piconese S; Mauri G; Parenza M; Rigoni A; Sangaletti S; Colombo MP
    Cancer Res; 2011 Sep; 71(18):5987-97. PubMed ID: 21896641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Magnetic resonance imaging and histopathological characterization of prostate tumors in TRAMP mice as model for pre-clinical trials.
    Degrassi A; Russo M; Scanziani E; Giusti A; Ceruti R; Texido G; Pesenti E
    Prostate; 2007 Mar; 67(4):396-404. PubMed ID: 17187397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adenocarcina of the mouse prostate growth inhibition by celecoxib: downregulation of transcription factors involved in COX-2 inhibition.
    Narayanan BA; Narayanan NK; Pttman B; Reddy BS
    Prostate; 2006 Feb; 66(3):257-65. PubMed ID: 16175586
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disruption of arginase II alters prostate tumor formation in TRAMP mice.
    Mumenthaler SM; Rozengurt N; Livesay JC; Sabaghian A; Cederbaum SD; Grody WW
    Prostate; 2008 Oct; 68(14):1561-9. PubMed ID: 18663728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: A good alternative to study PCa progression and chemoprevention approaches.
    Kido LA; de Almeida Lamas C; Maróstica MR; Cagnon VHA
    Life Sci; 2019 Jan; 217():141-147. PubMed ID: 30528182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effective prostate cancer chemopreventive intervention with green tea polyphenols in the TRAMP model depends on the stage of the disease.
    Adhami VM; Siddiqui IA; Sarfaraz S; Khwaja SI; Hafeez BB; Ahmad N; Mukhtar H
    Clin Cancer Res; 2009 Mar; 15(6):1947-53. PubMed ID: 19276266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mouse prostate proteomes are differentially altered by supranutritional intake of four selenium compounds.
    Zhang J; Wang L; Li G; Anderson LB; Xu Y; Witthuhn B; Lü J
    Nutr Cancer; 2011; 63(5):778-89. PubMed ID: 21614726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of transgenic mice as models for prostate cancer chemoprevention.
    Nguewa PA; Calvo A
    Curr Mol Med; 2010 Nov; 10(8):705-18. PubMed ID: 20937024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.