These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21360766)

  • 21. Biomineralized multifunctional magnetite/carbon microspheres for applications in Li-ion batteries and water treatment.
    Shim HW; Park S; Song HJ; Kim JC; Jang E; Hong KS; Kim TD; Kim DW
    Chemistry; 2015 Mar; 21(12):4655-63. PubMed ID: 25676609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanosized LiFePO4 cathode materials for lithium ion batteries.
    Gu HB; Jun DK; Park GC; Jin B; Jin EM
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3980-4. PubMed ID: 18047100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.
    Xu D; He YB; Chu X; Ding Z; Li B; He J; Du H; Qin X; Kang F
    ChemSusChem; 2015 Mar; 8(6):1009-16. PubMed ID: 25469674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocomposite of LiFePO4 and mesoporous carbon for high power cathode of lithium rechargeable batteries.
    Kim JI; Roh KC; Lee JW
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8475-80. PubMed ID: 23421233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O₂ for high-rate performance lithium-ion batteries.
    Wei GZ; Lu X; Ke FS; Huang L; Li JT; Wang ZX; Zhou ZY; Sun SG
    Adv Mater; 2010 Oct; 22(39):4364-7. PubMed ID: 20803764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes.
    Lee YJ; Yi H; Kim WJ; Kang K; Yun DS; Strano MS; Ceder G; Belcher AM
    Science; 2009 May; 324(5930):1051-5. PubMed ID: 19342549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries.
    Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y
    Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved electrochemical performance of LiCoPO4 nanoparticles for lithium ion batteries.
    Gu HB; Jin B; Jun DK; Han Z
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4037-40. PubMed ID: 18047113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of micro-nano hierarchical structured LiFePO₄/C composite with both superior high-rate performance and high tap density.
    Wang M; Yang Y; Zhang Y
    Nanoscale; 2011 Oct; 3(10):4434-9. PubMed ID: 21935524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.
    Ha J; Park SK; Yu SH; Jin A; Jang B; Bong S; Kim I; Sung YE; Piao Y
    Nanoscale; 2013 Sep; 5(18):8647-55. PubMed ID: 23897269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries.
    Shao J; Li X; Wan Z; Zhang L; Ding Y; Zhang L; Qu Q; Zheng H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7671-5. PubMed ID: 23915302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries.
    Wang S; Ren Y; Liu G; Xing Y; Zhang S
    Nanoscale; 2014 Apr; 6(7):3508-12. PubMed ID: 24567164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge.
    Bai P; Cogswell DA; Bazant MZ
    Nano Lett; 2011 Nov; 11(11):4890-6. PubMed ID: 21985573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hierarchical Zn2Mo3O8 nanodots-porous carbon composite as a superior anode for lithium-ion batteries.
    Zhu Y; Zhong Y; Chen G; Deng X; Cai R; Li L; Shao Z
    Chem Commun (Camb); 2016 Aug; 52(60):9402-5. PubMed ID: 27374699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly reversible lithium storage in Bacillus subtilis -directed porous Co₃O₄ nanostructures.
    Shim HW; Jin YH; Seo SD; Lee SH; Kim DW
    ACS Nano; 2011 Jan; 5(1):443-9. PubMed ID: 21155558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polystyrene-Templated Aerosol Synthesis of MoS2 -Amorphous Carbon Composite with Open Macropores as Battery Electrode.
    Choi SH; Kang YC
    ChemSusChem; 2015 Jul; 8(13):2260-7. PubMed ID: 26098539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries.
    Wang SH; Hou SS; Kuo PL; Teng H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.