These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21360779)

  • 1. Reduced graphene oxide electrodes for large area organic electronics.
    Wöbkenberg PH; Eda G; Leem DS; de Mello JC; Bradley DD; Chhowalla M; Anthopoulos TD
    Adv Mater; 2011 Apr; 23(13):1558-62. PubMed ID: 21360779
    [No Abstract]   [Full Text] [Related]  

  • 2. All-Printed, Foldable Organic Thin-Film Transistors on Glassine Paper.
    Hyun WJ; Secor EB; Rojas GA; Hersam MC; Francis LF; Frisbie CD
    Adv Mater; 2015 Nov; 27(44):7058-64. PubMed ID: 26439306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic.
    Lee WH; Park J; Sim SH; Jo SB; Kim KS; Hong BH; Cho K
    Adv Mater; 2011 Apr; 23(15):1752-6. PubMed ID: 21491508
    [No Abstract]   [Full Text] [Related]  

  • 4. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes.
    Yin Z; Sun S; Salim T; Wu S; Huang X; He Q; Lam YM; Zhang H
    ACS Nano; 2010 Sep; 4(9):5263-8. PubMed ID: 20738121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of the role of the first layer in p- and n-type organic field-effect transistors with graphene electrodes.
    Wen Y; Chen J; Zhang L; Sun X; Zhao Y; Guo Y; Yu G; Liu Y
    Adv Mater; 2012 Mar; 24(11):1471-5. PubMed ID: 22344790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics.
    Parvez K; Li R; Puniredd SR; Hernandez Y; Hinkel F; Wang S; Feng X; Müllen K
    ACS Nano; 2013 Apr; 7(4):3598-606. PubMed ID: 23531157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing.
    Kim YH; Yoo B; Anthony JE; Park SK
    Adv Mater; 2012 Jan; 24(4):497-502. PubMed ID: 22213548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrode's effect on the stability of organic transistors and circuits.
    Li L; Meise-Gresch K; Jiang L; Du C; Wang W; Fuchs H; Chi L
    Adv Mater; 2012 Jun; 24(22):3053-8. PubMed ID: 22549823
    [No Abstract]   [Full Text] [Related]  

  • 9. Enhanced charge injection in pentacene field-effect transistors with graphene electrodes.
    Lee S; Jo G; Kang SJ; Wang G; Choe M; Park W; Kim DY; Kahng YH; Lee T
    Adv Mater; 2011 Jan; 23(1):100-5. PubMed ID: 21069759
    [No Abstract]   [Full Text] [Related]  

  • 10. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.
    Beck JH; Barton RA; Cox MP; Alexandrou K; Petrone N; Olivieri G; Yang S; Hone J; Kymissis I
    Nano Lett; 2015 Apr; 15(4):2555-61. PubMed ID: 25774924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene as transparent electrode material for organic electronics.
    Pang S; Hernandez Y; Feng X; Müllen K
    Adv Mater; 2011 Jul; 23(25):2779-95. PubMed ID: 21520463
    [No Abstract]   [Full Text] [Related]  

  • 12. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells.
    Liu Z; Li J; Sun ZH; Tai G; Lau SP; Yan F
    ACS Nano; 2012 Jan; 6(1):810-8. PubMed ID: 22148872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-based electrodes.
    Huang X; Zeng Z; Fan Z; Liu J; Zhang H
    Adv Mater; 2012 Nov; 24(45):5979-6004. PubMed ID: 22927209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic electronics on banknotes.
    Zschieschang U; Yamamoto T; Takimiya K; Kuwabara H; Ikeda M; Sekitani T; Someya T; Klauk H
    Adv Mater; 2011 Feb; 23(5):654-8. PubMed ID: 21274915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene - a promising material for organic photovoltaic cells.
    Wan X; Long G; Huang L; Chen Y
    Adv Mater; 2011 Dec; 23(45):5342-58. PubMed ID: 21956482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing contact resistance in graphene devices through contact area patterning.
    Smith JT; Franklin AD; Farmer DB; Dimitrakopoulos CD
    ACS Nano; 2013 Apr; 7(4):3661-7. PubMed ID: 23473291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors.
    Lemaitre MG; Donoghue EP; McCarthy MA; Liu B; Tongay S; Gila B; Kumar P; Singh RK; Appleton BR; Rinzler AG
    ACS Nano; 2012 Oct; 6(10):9095-102. PubMed ID: 23002806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stretchable transistors using a microcracked organic semiconductor.
    Chortos A; Lim J; To JW; Vosgueritchian M; Dusseault TJ; Kim TH; Hwang S; Bao Z
    Adv Mater; 2014 Jul; 26(25):4253-9. PubMed ID: 24740928
    [No Abstract]   [Full Text] [Related]  

  • 19. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography.
    Zhang L; Liu H; Zhao Y; Sun X; Wen Y; Guo Y; Gao X; Di CA; Yu G; Liu Y
    Adv Mater; 2012 Jan; 24(3):436-40. PubMed ID: 22190264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics.
    Zhao Y; Di CA; Gao X; Hu Y; Guo Y; Zhang L; Liu Y; Wang J; Hu W; Zhu D
    Adv Mater; 2011 Jun; 23(21):2448-53. PubMed ID: 21394796
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.