These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 21360897)
1. [Effect of the soil bulk density on the root morphology and cadmium uptake by Thlaspi caerulescens grown on Cd-contaminated soil]. Yang Y; Jiang RF; Li HF; Wang W; Zheng RL Huan Jing Ke Xue; 2010 Dec; 31(12):3043-9. PubMed ID: 21360897 [TBL] [Abstract][Full Text] [Related]
2. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. Saison C; Schwartz C; Morel JL Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
4. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES]. Han WX; Xu YM; Du W; Tang AH; Jiang RF Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2565-7. PubMed ID: 19950676 [TBL] [Abstract][Full Text] [Related]
5. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling. Ingwersen J; Bücherl B; Neumann G; Streck T J Environ Qual; 2006; 35(6):2055-65. PubMed ID: 17071874 [TBL] [Abstract][Full Text] [Related]
6. Towards practical cadmium phytoextraction with Noccaea caerulescens. Simmons RW; Chaney RL; Angle JS; Kruatrachue M; Klinphoklap S; Reeves RD; Bellamy P Int J Phytoremediation; 2015; 17(1-6):191-9. PubMed ID: 25360891 [TBL] [Abstract][Full Text] [Related]
7. Influence of edaphic conditions and nitrogen fertilizers on cadmium and zinc phytoextraction efficiency of Noccaea caerulescens. Jacobs A; Noret N; Van Baekel A; Liénard A; Colinet G; Drouet T Sci Total Environ; 2019 May; 665():649-659. PubMed ID: 30776637 [TBL] [Abstract][Full Text] [Related]
8. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation. Catherine S; Christophe S; Louis MJ Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963 [TBL] [Abstract][Full Text] [Related]
9. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. Papoyan A; Piñeros M; Kochian LV New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666 [TBL] [Abstract][Full Text] [Related]
10. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Yanai J; Zhao FJ; McGrath SP; Kosaki T Environ Pollut; 2006 Jan; 139(1):167-75. PubMed ID: 15998562 [TBL] [Abstract][Full Text] [Related]
11. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. McGrath SP; Lombi E; Gray CW; Caille N; Dunham SJ; Zhao FJ Environ Pollut; 2006 May; 141(1):115-25. PubMed ID: 16202493 [TBL] [Abstract][Full Text] [Related]
12. Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction. Schwartz C; Sirguey C; Peronny S; Reeves RD; Bourgaud F; Morel JL Int J Phytoremediation; 2006; 8(4):339-57. PubMed ID: 17305307 [TBL] [Abstract][Full Text] [Related]
13. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965 [TBL] [Abstract][Full Text] [Related]
14. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Monsant AC; Tang C; Baker AJ Chemosphere; 2008 Oct; 73(5):635-42. PubMed ID: 18752830 [TBL] [Abstract][Full Text] [Related]
15. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Keller C; Hammer D Environ Pollut; 2004 Sep; 131(2):243-54. PubMed ID: 15234091 [TBL] [Abstract][Full Text] [Related]
16. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Tlustoš P; Břendová K; Száková J; Najmanová J; Koubová K Int J Phytoremediation; 2016; 18(2):110-5. PubMed ID: 26280307 [TBL] [Abstract][Full Text] [Related]
17. Cadmium uptake by a hyperaccumulator and three Pennisetum grasses with associated rhizosphere effects. Zheng R; Teng W; Hu Y; Hou X; Shi D; Tian X; Scullion J; Wu J Environ Sci Pollut Res Int; 2022 Jan; 29(2):1845-1857. PubMed ID: 34363165 [TBL] [Abstract][Full Text] [Related]
18. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Deniau AX; Pieper B; Ten Bookum WM; Lindhout P; Aarts MG; Schat H Theor Appl Genet; 2006 Sep; 113(5):907-20. PubMed ID: 16850314 [TBL] [Abstract][Full Text] [Related]
19. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905 [TBL] [Abstract][Full Text] [Related]
20. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Luo YM; Christie P; Baker AJ Chemosphere; 2000 Jul; 41(1-2):161-4. PubMed ID: 10819195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]