These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 21361014)

  • 61. [Correlations between spectral characteristics and diurnal CO2 budget of winter wheat field on Loess Plateau].
    Li SJ; Liu ZH; Liu WZ; Suhiro T; Higuchi A; Tetsuya H; Yoshihiro F
    Ying Yong Sheng Tai Xue Bao; 2008 Nov; 19(11):2408-13. PubMed ID: 19238839
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale.
    Skakun S; Vermote E; Roger JC; Franch B
    AIMS Geosci; 2017; 3(2):163-186. PubMed ID: 29888751
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Characteristics and simulation of heat and CO2 fluxes over a typical cropland during the winter wheat growing in the North China Plain].
    Yuan ZJ; Shen YJ; Chu YM; Qi YQ
    Huan Jing Ke Xue; 2010 Jan; 31(1):41-8. PubMed ID: 20329514
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Estimation models of rice LAI and chlorophyll content based on MOD09].
    Cheng Q
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1453-8. PubMed ID: 17066702
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simulation and Verification of Vertical Heterogeneity Spectral Response of Winter Wheat Based on the mSCOPE Model.
    Huang L; Zhang Y; Yang G; Liang D; Li H; Li Z; Yang X
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824031
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Using HJ-CCD image and PLS algorithm to estimate the yield of field-grown winter wheat.
    Zhang PP; Zhou XX; Wang ZX; Mao W; Li WX; Yun F; Guo WS; Tan CW
    Sci Rep; 2020 Mar; 10(1):5173. PubMed ID: 32198471
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Crop monitoring and biomass estimation based on downscaled remote sensing data in AquaCrop model (case study: Qazvin Plain, Iran).
    Bahmanabadi B; Kaviani A; Etedali HR
    Environ Monit Assess; 2023 Oct; 195(11):1275. PubMed ID: 37801172
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Models for predicting potential yield loss of wheat caused by stripe rust in the U.S. Pacific Northwest.
    Sharma-Poudyal D; Chen XM
    Phytopathology; 2011 May; 101(5):544-54. PubMed ID: 21190424
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.
    Huang N; Wang L; Guo Y; Hao P; Niu Z
    PLoS One; 2014; 9(8):e105150. PubMed ID: 25157827
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China.
    Zhang W; Liu W; Xue Q; Chen J; Han X
    Water Sci Technol; 2013; 68(4):821-8. PubMed ID: 23985512
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners.
    Su L; Wang Q; Wang C; Shan Y
    PLoS One; 2015; 10(11):e0141835. PubMed ID: 26536468
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].
    Wang L; Zheng YF; Yu Q; Wang EL
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2480-6. PubMed ID: 18260451
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Quantitative relationships between leaf area index and canopy reflectance spectra of wheat].
    Li Y; Zhu Y; Dai T; Tian Y; Cao W
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1443-7. PubMed ID: 17066700
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Retrieval of leaf area index of Phyllostachys praecox forest based on MODIS reflectance time series data.].
    Zhu DE; Xu XJ; DU HQ; Zhou GM; Mao FJ; Li XJ; Li YG
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2391-2400. PubMed ID: 30039679
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Simulation model of barley leaf area index].
    Liu TM; Wang Y; Zou W; Sun DF; Tang L; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2010 Jan; 21(1):121-8. PubMed ID: 20387433
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Winter wheat yield gap between field blocks based on comparative performance analysis].
    Chen J; Wang ZY; Li LT; Zhang KF; Yu ZR
    Ying Yong Sheng Tai Xue Bao; 2008 Sep; 19(9):1971-6. PubMed ID: 19102311
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean.
    Liao C; Wang J; Dong T; Shang J; Liu J; Song Y
    Sci Total Environ; 2019 Feb; 650(Pt 2):1707-1721. PubMed ID: 30273730
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Remote sensing inversion of surface soil organic matter at jointing stage of winter wheat based on unmanned aerial vehicle multispectral].
    Wang X; Li YH; Wang RY; Shi FZ; Xu ST
    Ying Yong Sheng Tai Xue Bao; 2020 Jul; 31(7):2399-2406. PubMed ID: 32715706
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Extraction and spatio-temporal analysis of phenological dates of winter wheat in north Henan Province of China from 2003 to 2018 based on MODIS NDVI time series.
    Gao Z
    PLoS One; 2024; 19(4):e0300486. PubMed ID: 38626154
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Improving the matching degree between remotely sensed phenological dates and physiological growing stages of soybean by a dynamic offset-adjustment strategy.
    Chen S; Yi Q; Wang F; Zheng J; Li J
    Sci Total Environ; 2024 Jan; 906():167783. PubMed ID: 37839478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.