BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21361023)

  • 21. A meta-analysis about the accumulation of heavy metals uptake by
    Song W; Wang J; Zhai L; Ge L; Hao S; Shi L; Lian C; Chen C; Shen Z; Chen Y
    Int J Phytoremediation; 2022; 24(7):744-752. PubMed ID: 34493098
    [No Abstract]   [Full Text] [Related]  

  • 22. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis).
    Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A
    Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Strengthening the effect of
    Deng YQ; Cao XY; Tan CY; Sun LJ; Peng X; Bai J; Huang SP
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3111-3118. PubMed ID: 33345513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effects of amendments on the alleviation of aluminum toxicity and cadmium and zinc uptake by Sedum plumbizincicola in acid soils].
    Chen S; Zhou J; Liu H; Luo Y; Wu L; Xin Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):529-540. PubMed ID: 32237546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rotation of Celosia argentea and Sedum plumbizincicola promotes Cd phytoextraction efficiency.
    Liu J; Jiang X; Zhang X; Jiang P; Yu G
    J Hazard Mater; 2024 Jul; 472():134551. PubMed ID: 38743979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.
    Wu L; Li Z; Han C; Liu L; Teng Y; Sun X; Pan C; Huang Y; Luo Y; Christie P
    Int J Phytoremediation; 2012 Jul; 14(6):570-84. PubMed ID: 22908627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator
    Fan Y; Li Z; Zhou T; Zhou S; Wu L; Luo Y; Christie P
    Int J Phytoremediation; 2019; 21(8):733-741. PubMed ID: 30746960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.
    Li Z; Jia M; Wu L; Christie P; Luo Y
    Environ Pollut; 2016 Feb; 209():123-31. PubMed ID: 26650084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.
    Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H
    J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola.
    Cao D; Zhang H; Wang Y; Zheng L
    Bull Environ Contam Toxicol; 2014 Aug; 93(2):171-6. PubMed ID: 24789526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of organic-inorganic amendments on the cadmium fraction in soil and its accumulation in rice (Oryza sativa L.).
    Li B; Yang L; Wang CQ; Zheng SQ; Xiao R; Guo Y
    Environ Sci Pollut Res Int; 2019 May; 26(14):13762-13772. PubMed ID: 30120729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dispose waste liquor of fresh biomass of a hyperaccumulator
    Hu P; Du Y; Yang Y; Li Z; Luo Y; Wu L
    Int J Phytoremediation; 2022; 24(1):1-11. PubMed ID: 34004122
    [No Abstract]   [Full Text] [Related]  

  • 33. [Effect of co-planting of Sedum alfredii and Zea mays on Zn-contaminated sewage sludge].
    Hei L; Wu QT; Long XX; Hu YM
    Huan Jing Ke Xue; 2007 Apr; 28(4):852-8. PubMed ID: 17639949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinc Supply Affects Cadmium Uptake and Translocation in the Hyperaccumulator
    Zhou J; Moore RET; Rehkämper M; Kreissig K; Coles B; Sun Y; Li Z; Luo Y; Christie P; Wu L
    Environ Sci Technol; 2023 Apr; 57(14):5891-5902. PubMed ID: 36988089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impacts of simulated atmospheric cadmium deposition on the physiological response and cadmium accumulation of Sedum plumbizincicola.
    Huang S; Tan C; Cao X; Yang J; Xing Q; Tu C
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16413-16425. PubMed ID: 38315335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].
    Nai FJ; Wu LH; Liu HY; Ren J; Liu WX; Luo YM
    Ying Yong Sheng Tai Xue Bao; 2013 May; 24(5):1428-34. PubMed ID: 24015566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of elevated CO₂ on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii.
    Li T; Tao Q; Han X; Yang X
    Sci Total Environ; 2013 Jun; 454-455():510-6. PubMed ID: 23567171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of mixed amendments on the phytoavailability of Cd in contaminated paddy soil under a rice-rape rotation system.
    Ran H; Guo Z; Shi L; Feng W; Xiao X; Peng C; Xue Q
    Environ Sci Pollut Res Int; 2019 May; 26(14):14128-14136. PubMed ID: 30859443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of four endophytic bacteria on cadmium speciation and remediation efficiency of Sedum plumbizincicola in farmland soil.
    Cheng X; Cao X; Tan C; Liu L; Bai J; Liang Y; Cai R
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89557-89569. PubMed ID: 35852747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.