These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21361028)

  • 1. [Application of nanoscale material in environmental remediation and its eco-environmental toxicity assessment: a review].
    Wang M; Chen SB; Ma YB
    Ying Yong Sheng Tai Xue Bao; 2010 Nov; 21(11):2986-91. PubMed ID: 21361028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology and in situ remediation: a review of the benefits and potential risks.
    Karn B; Kuiken T; Otto M
    Environ Health Perspect; 2009 Dec; 117(12):1813-31. PubMed ID: 20049198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk valuation of ecological resources at contaminated deactivation and decommissioning facilities: methodology and a case study at the Department of Energy's Hanford site.
    Burger J; Gochfeld M; Jeitner C
    Environ Monit Assess; 2018 Jul; 190(8):478. PubMed ID: 30030638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect on ecological systems of remediation to protect human health.
    Burger J
    Am J Public Health; 2007 Sep; 97(9):1572-8. PubMed ID: 17666693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation.
    Corsi I; Venditti I; Trotta F; Punta C
    Sci Total Environ; 2023 Mar; 864():161181. PubMed ID: 36581299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution?
    Esposito MC; Corsi I; Russo GL; Punta C; Tosti E; Gallo A
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33809769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives.
    Liu L; Bilal M; Duan X; Iqbal HMN
    Sci Total Environ; 2019 Jun; 667():444-454. PubMed ID: 30833243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From ecotoxicology to nanoecotoxicology.
    Kahru A; Dubourguier HC
    Toxicology; 2010 Mar; 269(2-3):105-19. PubMed ID: 19732804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review.
    Sharma R; Sharma N; Prashar A; Hansa A; Asgari Lajayer B; Price GW
    Sci Total Environ; 2024 Jan; 906():167697. PubMed ID: 37832694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Current researches in microbial remediation of arsenic pollution].
    Wu J; Xie MJ; Yang Q; Tu SX
    Huan Jing Ke Xue; 2011 Mar; 32(3):817-24. PubMed ID: 21634183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment--a review.
    Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1485-95. PubMed ID: 20183505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Degradation and transformation of engineering carbon nanomaterials in the environment: A review].
    Yue FN; Luo SM; Zhang CD
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):589-96. PubMed ID: 23705409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles.
    Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms.
    Rather MA; Bhat IA; Sharma N; Sharma R
    Adv Exp Med Biol; 2018; 1048():263-284. PubMed ID: 29453544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends in nanomaterials applications in environmental monitoring and remediation.
    Das S; Sen B; Debnath N
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18333-44. PubMed ID: 26490920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental compatibility of closed landfills - assessing future pollution hazards.
    Laner D; Fellner J; Brunner PH
    Waste Manag Res; 2011 Jan; 29(1):89-98. PubMed ID: 21068055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent innovations of nanotechnology in water treatment: A comprehensive review.
    Ajith MP; Aswathi M; Priyadarshini E; Rajamani P
    Bioresour Technol; 2021 Dec; 342():126000. PubMed ID: 34587582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms.
    Anjum NA; Adam V; Kizek R; Duarte AC; Pereira E; Iqbal M; Lukatkin AS; Ahmad I
    Environ Res; 2015 Apr; 138():306-25. PubMed ID: 25749126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable Synthesis of Novel Green-Based Nanoparticles for Therapeutic Interventions and Environmental Remediation.
    Singh S; Tiwari H; Verma A; Gupta P; Chattopadhaya A; Singh A; Singh S; Kumar B; Mandal A; Kumar R; Yadav AK; Gautam HK; Gautam V
    ACS Synth Biol; 2024 Jul; 13(7):1994-2007. PubMed ID: 38899943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation.
    Corsi I; Winther-Nielsen M; Sethi R; Punta C; Della Torre C; Libralato G; Lofrano G; Sabatini L; Aiello M; Fiordi L; Cinuzzi F; Caneschi A; Pellegrini D; Buttino I
    Ecotoxicol Environ Saf; 2018 Jun; 154():237-244. PubMed ID: 29476973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.