BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21361212)

  • 1. A TCP model incorporating setup uncertainty and tumor cell density variation in microscopic extension to guide treatment planning.
    Jin JY; Kong FM; Liu D; Ren L; Li H; Zhong H; Movsas B; Chetty IJ
    Med Phys; 2011 Jan; 38(1):439-48. PubMed ID: 21361212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of local control due to tumor displacement as a function of margin size, dose-response slope, and number of fractions.
    Selvaraj J; Uzan J; Baker C; Nahum A
    Med Phys; 2013 Apr; 40(4):041715. PubMed ID: 23556885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans.
    Siebers JV; Keall PJ; Wu Q; Williamson JF; Schmidt-Ullrich RK
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):422-33. PubMed ID: 16168835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: pitfalls in deducing radiobiologic parameters for tumors from clinical data.
    Levegrün S; Jackson A; Zelefsky MJ; Skwarchuk MW; Venkatraman ES; Schlegel W; Fuks Z; Leibel SA; Ling CC
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):1064-80. PubMed ID: 11704332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of treatment optimization directly incorporating random patient setup uncertainty with a margin-based approach.
    Moore JA; Gordon JJ; Anscher MS; Siebers JV
    Med Phys; 2009 Sep; 36(9):3880-90. PubMed ID: 19810460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors.
    Balter JM; Brock KK; Lam KL; Tatro D; Dawson LA; McShan DL; Ten Haken RK
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):610-4. PubMed ID: 16095848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined recipe for clinical target volume and planning target volume margins.
    Stroom J; Gilhuijs K; Vieira S; Chen W; Salguero J; Moser E; Sonke JJ
    Int J Radiat Oncol Biol Phys; 2014 Mar; 88(3):708-14. PubMed ID: 24113058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of setup and range uncertainties on TCP and NTCP following VMAT or IMPT of oropharyngeal cancer patients.
    Hamming-Vrieze O; Depauw N; Craft DL; Chan AW; Rasch CRN; Verheij M; Sonke JJ; Kooy HM
    Phys Med Biol; 2019 Apr; 64(9):095001. PubMed ID: 30921775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric effect of respiratory motion in external beam radiotherapy of the lung.
    Mechalakos J; Yorke E; Mageras GS; Hertanto A; Jackson A; Obcemea C; Rosenzweig K; Clifton Ling C
    Radiother Oncol; 2004 May; 71(2):191-200. PubMed ID: 15110453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer.
    Valdes G; Robinson C; Lee P; Morel D; Low D; Iwamoto KS; Lamb JM
    Med Dosim; 2015; 40(1):64-9. PubMed ID: 25542785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiobiological evaluation considering setup error on single-isocenter irradiation in stereotactic radiosurgery.
    Nakano H; Tanabe S; Sasamoto R; Takizawa T; Utsunomiya S; Sakai M; Nakano T; Ohta A; Kaidu M; Ishikawa H
    J Appl Clin Med Phys; 2021 Jul; 22(7):266-275. PubMed ID: 34151498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On cold spots in tumor subvolumes.
    Tomé WA; Fowler JF
    Med Phys; 2002 Jul; 29(7):1590-8. PubMed ID: 12148742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adequate margins for random setup uncertainties in head-and-neck IMRT.
    Astreinidou E; Bel A; Raaijmakers CP; Terhaard CH; Lagendijk JJ
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(3):938-44. PubMed ID: 15708278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of microscopic disease on the tumor control probability in non-small-cell lung cancer.
    Siedschlag C; Boersma L; van Loon J; Rossi M; van Baardwijk A; Gilhuijs K; Stroom J
    Radiother Oncol; 2011 Sep; 100(3):344-50. PubMed ID: 21955665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conceptual model integrating spatial information to assess target volume coverage for IMRT treatment planning.
    Chao KS; Blanco AI; Dempsey JF
    Int J Radiat Oncol Biol Phys; 2003 Aug; 56(5):1438-49. PubMed ID: 12873690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling tumor control probability for spatially inhomogeneous risk of failure based on clinical outcome data.
    Lühr A; Löck S; Jakobi A; Stützer K; Bandurska-Luque A; Vogelius IR; Enghardt W; Baumann M; Krause M
    Z Med Phys; 2017 Dec; 27(4):285-299. PubMed ID: 28676371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical investigation of adequate range uncertainty margins in proton treatment planning to preserve tumor control probability.
    Taasti VT; Jeong J; Jackson A; Deasy JO
    Acta Oncol; 2019 Oct; 58(10):1446-1450. PubMed ID: 31241385
    [No Abstract]   [Full Text] [Related]  

  • 18. Impact of Gaussian uncertainty assumptions on probabilistic optimization in particle therapy.
    Wieser HP; Karger CP; Wahl N; Bangert M
    Phys Med Biol; 2020 Jul; 65(14):145007. PubMed ID: 32340012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostate cancer tumour control probability modelling for external beam radiotherapy based on multi-parametric MRI-GTV definition.
    Sachpazidis I; Mavroidis P; Zamboglou C; Klein CM; Grosu AL; Baltas D
    Radiat Oncol; 2020 Oct; 15(1):242. PubMed ID: 33081804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-shaping using targeted sparse optimization.
    Sayre GA; Ruan D
    Med Phys; 2013 Jul; 40(7):071711. PubMed ID: 23822415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.