These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21361410)

  • 1. Effect of bandpass filtering on melodic contour identification by cochlear implant users.
    Galvin JJ; Fu QJ
    J Acoust Soc Am; 2011 Feb; 129(2):EL39-44. PubMed ID: 21361410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musical pitch and lexical tone perception with cochlear implants.
    Wang W; Zhou N; Xu L
    Int J Audiol; 2011 Apr; 50(4):270-8. PubMed ID: 21190394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contour identification with pitch and loudness cues using cochlear implants.
    Luo X; Masterson ME; Wu CC
    J Acoust Soc Am; 2014 Jan; 135(1):EL8-14. PubMed ID: 24437857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musical sound quality impairments in cochlear implant (CI) users as a function of limited high-frequency perception.
    Roy AT; Jiradejvong P; Carver C; Limb CJ
    Trends Amplif; 2012 Dec; 16(4):191-200. PubMed ID: 23172009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of instrument timbre on melodic contour identification by cochlear implant users.
    Galvin JJ; Fu QJ; Oba S
    J Acoust Soc Am; 2008 Oct; 124(4):EL189-95. PubMed ID: 19062785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the relationship between modulation sensitivity and pitch resolution in cochlear implant users.
    Camarena A; Goldsworthy RL
    Hear Res; 2024 Jul; 448():109026. PubMed ID: 38776706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users.
    Li T; Fu QJ
    Int J Audiol; 2011 Aug; 50(8):498-502. PubMed ID: 21696330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consonant recognition as a function of the number of stimulation channels in the Hybrid short-electrode cochlear implant.
    Reiss LA; Turner CW; Karsten SA; Erenberg SR; Taylor J; Gantz BJ
    J Acoust Soc Am; 2012 Nov; 132(5):3406-17. PubMed ID: 23145621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perception of pure tones and iterated rippled noise for normal hearing and cochlear implant users.
    Penninger RT; Chien WW; Jiradejvong P; Boeke E; Carver CL; Limb CJ
    Trends Amplif; 2013 Mar; 17(1):45-53. PubMed ID: 23539260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cochlear implant user with exceptional musical hearing ability.
    Maarefvand M; Marozeau J; Blamey PJ
    Int J Audiol; 2013 Jun; 52(6):424-32. PubMed ID: 23509878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.
    Anderson ES; Oxenham AJ; Nelson PB; Nelson DA
    J Acoust Soc Am; 2012 Dec; 132(6):3925-34. PubMed ID: 23231122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of room acoustic parameters on speech and music perception among participants with cochlear implants.
    Eurich B; Klenzner T; Oehler M
    Hear Res; 2019 Jun; 377():122-132. PubMed ID: 30933704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users.
    Jones GL; Won JH; Drennan WR; Rubinstein JT
    J Acoust Soc Am; 2013 Jan; 133(1):425-33. PubMed ID: 23297914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding pitch contours using current steering.
    Luo X; Landsberger DM; Padilla M; Srinivasan AG
    J Acoust Soc Am; 2010 Sep; 128(3):1215-23. PubMed ID: 20815457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaural envelope correlation change discrimination in bilateral cochlear implantees: effects of mismatch, centering, and onset of deafness.
    Goupell MJ
    J Acoust Soc Am; 2015 Mar; 137(3):1282-97. PubMed ID: 25786942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.
    Schatzer R; Vermeire K; Visser D; Krenmayr A; Kals M; Voormolen M; Van de Heyning P; Zierhofer C
    Hear Res; 2014 Mar; 309():26-35. PubMed ID: 24252455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.
    Stahl P; Macherey O; Meunier S; Roman S
    J Acoust Soc Am; 2016 Apr; 139(4):1578. PubMed ID: 27106306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating interaural frequency-place mismatches via bimodal vowel integration.
    Guérit F; Santurette S; Chalupper J; Dau T
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25421087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.