These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 21361414)
1. Effects of coupled vibrations on the parameters of tangentially polarized stripe-electroded piezoelectric cylinders (L). Aronov B; Bachand C; Brown DA J Acoust Soc Am; 2011 Feb; 129(2):582-4. PubMed ID: 21361414 [TBL] [Abstract][Full Text] [Related]
2. Coupled vibration analysis of the thin-walled cylindrical piezoelectric ceramic transducers. Aronov B J Acoust Soc Am; 2009 Feb; 125(2):803-18. PubMed ID: 19206858 [TBL] [Abstract][Full Text] [Related]
3. Electromechanical properties of stripe-electroded tangentially polarized piezoelectric flexural bars. Sarangapani S; Brown DA J Acoust Soc Am; 2013 May; 133(5):2661-7. PubMed ID: 23654374 [TBL] [Abstract][Full Text] [Related]
4. Effects of coupled vibrations on the acoustical performance of underwater cylindrical shell transducers. Aronov B; Brown DA; Bachand CL J Acoust Soc Am; 2007 Dec; 122(6):3419-27. PubMed ID: 18247751 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the piezoelectric properties of tangentially polarized, stripe-electroded cylinders. Aronov B; Bachand C; Brown DA J Acoust Soc Am; 2011 May; 129(5):2960-7. PubMed ID: 21568399 [TBL] [Abstract][Full Text] [Related]
6. Improved calculations of the electromechanical properties of tangentially poled stripe-electroded piezoelectric bars and cylinders with nonuniform electric fields. Sarangapani S; Brown DA J Acoust Soc Am; 2012 Nov; 132(5):3068-75. PubMed ID: 23145592 [TBL] [Abstract][Full Text] [Related]
7. Axial vibration characteristics of a cylindrical, radially polarized piezoelectric transducer with different electrode patterns. Sun D; Wang S; Hata S; Shimokohbe A Ultrasonics; 2010 Mar; 50(3):403-10. PubMed ID: 19818980 [TBL] [Abstract][Full Text] [Related]
8. Modal analysis of the electromechanical conversion in piezoelectric ceramic spherical shells. Aronov B; Brown DA; Yan X; Bachand CL J Acoust Soc Am; 2011 Aug; 130(2):753-63. PubMed ID: 21877791 [TBL] [Abstract][Full Text] [Related]
9. Vibration characteristics of a corrugated cylindrical shell piezoelectric transducer. Xu L; Chen M; Du H; Hu H; Hu Y; Fan H; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2502-8. PubMed ID: 19049930 [TBL] [Abstract][Full Text] [Related]
11. Analysis of multilayered thin-film piezoelectric transducer arrays. Li H; Du H; Xu L; Hu Y; Fan H; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2571-7. PubMed ID: 19942544 [TBL] [Abstract][Full Text] [Related]
12. Compound piezoelectric cylindrical resonators as sensors of the rheological parameters of viscoelastic media. Kiełczyński P; Szalewski M IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1199-206. PubMed ID: 17571818 [TBL] [Abstract][Full Text] [Related]
13. Analysis of unidirectional broadband piezoelectric spherical shell transducers for underwater acoustics. Aronov B; Brown DA; Bachand CL; Yan X J Acoust Soc Am; 2012 Mar; 131(3):2079-90. PubMed ID: 22423704 [TBL] [Abstract][Full Text] [Related]
14. Measurements of mutual radiation impedance between baffled cylindrical shell transducers. Oishi T; Brown DA J Acoust Soc Am; 2007 Sep; 122(3):1581. PubMed ID: 17927416 [TBL] [Abstract][Full Text] [Related]
15. Vibration characteristics of a circular cylindrical ceramic tube piezoelectric transducer with helical electrodes. Xu L; Yang F; Hu Y; Fan H; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2587-91. PubMed ID: 19942546 [TBL] [Abstract][Full Text] [Related]