These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21361689)

  • 1. Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall.
    Hajjarian Z; Xi J; Jaffer FA; Tearney GJ; Nadkarni SK
    J Biomed Opt; 2011 Feb; 16(2):026005. PubMed ID: 21361689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles.
    Nadkarni SK; Bouma BE; Yelin D; Gulati A; Tearney GJ
    J Biomed Opt; 2008; 13(5):054016. PubMed ID: 19021396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of atherosclerotic plaques by laser speckle imaging.
    Nadkarni SK; Bouma BE; Helg T; Chan R; Halpern E; Chau A; Minsky MS; Motz JT; Houser SL; Tearney GJ
    Circulation; 2005 Aug; 112(6):885-92. PubMed ID: 16061738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of bulk mechanical properties of tissue using laser speckle rheology.
    Hajjarian Z; Nadkarni SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5746-8. PubMed ID: 22255645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intravascular ultrasonic-photoacoustic (IVUP) endoscope with 2.2-mm diameter catheter for medical imaging.
    Bui NQ; Hlaing KK; Nguyen VP; Nguyen TH; Oh YO; Fan XF; Lee YW; Nam SY; Kang HW; Oh J
    Comput Med Imaging Graph; 2015 Oct; 45():57-62. PubMed ID: 26258625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic measurement of vascular scaffold elasticity using catheter system.
    Nitta N; Yamane T; Matsumura G; Shiina T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5298-301. PubMed ID: 19163913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cylindrical Transducer for Intravascular ARFI Imaging: Design and Feasibility.
    Herickhoff CD; Telichko AV; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):760-769. PubMed ID: 31545716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of stiffness changes in the ex vivo porcine aortic wall using magnetic resonance elastography.
    Xu L; Chen J; Yin M; Glaser KJ; Chen Q; Woodrum DA; Ehman RL
    Magn Reson Imaging; 2012 Jan; 30(1):122-7. PubMed ID: 22055848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of regional aortic stiffness using MR elastography: A phantom and ex-vivo porcine aorta study.
    Zhang N; Chen J; Yin M; Glaser KJ; Xu L; Ehman RL
    Magn Reson Imaging; 2016 Feb; 34(2):91-6. PubMed ID: 26597836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive intravascular imaging of atherosclerotic plaque in vivo using optical coherence tomography and fluorescence lifetime imaging.
    Lee MW; Song JW; Kang WJ; Nam HS; Kim TS; Kim S; Oh WY; Kim JW; Yoo H
    Sci Rep; 2018 Sep; 8(1):14561. PubMed ID: 30267024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images.
    Nadkarni SK; Bilenca A; Bouma BE; Tearney GJ
    J Biomed Opt; 2006; 11(2):021006. PubMed ID: 16674181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
    Zaman RT; Yousefi S; Chibana H; Ikeno F; Long SR; Gambhir SS; Chin FT; McConnell MV; Xing L; Yeung A
    J Nucl Med; 2019 Sep; 60(9):1308-1316. PubMed ID: 30737298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of atherosclerotic plaques and mural thrombi with intravascular ultrasound elastography: a potential method evaluated in an aortic rabbit model and a human coronary artery.
    Maurice RL; Fromageau J; Cardinal MH; Doyley M; de Muinck E; Robb J; Cloutier G
    IEEE Trans Inf Technol Biomed; 2008 May; 12(3):290-8. PubMed ID: 18693496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography.
    Cao Y; Kole A; Hui J; Zhang Y; Mai J; Alloosh M; Sturek M; Cheng JX
    Sci Rep; 2018 Feb; 8(1):2400. PubMed ID: 29402963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques.
    Sethuraman S; Amirian JH; Litovsky SH; Smalling RW; Emelianov SY
    Opt Express; 2008 Mar; 16(5):3362-7. PubMed ID: 18542427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A forward-viewing intravascular ultrasound catheter suitable for intracoronary use.
    Liang DH; Hu BS
    Biomed Instrum Technol; 1997; 31(1):45-53. PubMed ID: 9051225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser speckle imaging based on photothermally driven convection.
    Regan C; Choi B
    J Biomed Opt; 2016 Feb; 21(2):26011. PubMed ID: 26927221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging.
    Cheng H; Yan Y; Duong TQ
    Opt Express; 2008 Jul; 16(14):10214-9. PubMed ID: 18607429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear Wave Elastography Quantifies Stiffness in Ex Vivo Porcine Artery with Stiffened Arterial Region.
    Widman E; Maksuti E; Amador C; Urban MW; Caidahl K; Larsson M
    Ultrasound Med Biol; 2016 Oct; 42(10):2423-35. PubMed ID: 27425151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravascular photoacoustic imaging using an IVUS imaging catheter.
    Sethuraman S; Aglyamov SR; Amirian JH; Smalling RW; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 May; 54(5):978-86. PubMed ID: 17523562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.