BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21362185)

  • 1. CSI-OMIM--Clinical Synopsis Search in OMIM.
    Cohen R; Gefen A; Elhadad M; Birk OS
    BMC Bioinformatics; 2011 Mar; 12():65. PubMed ID: 21362185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.
    Gefen A; Cohen R; Birk OS
    Hum Mutat; 2010 Mar; 31(3):229-36. PubMed ID: 20052752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pyMeSHSim: an integrative python package for biomedical named entity recognition, normalization, and comparison of MeSH terms.
    Luo ZH; Shi MW; Yang Z; Zhang HY; Chen ZX
    BMC Bioinformatics; 2020 Jun; 21(1):252. PubMed ID: 32552728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.
    Amberger JS; Bocchini CA; Schiettecatte F; Scott AF; Hamosh A
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D789-98. PubMed ID: 25428349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferred inheritance of MorbidMap genes without OMIM clinical synopsis.
    Shakir A; Ripperger M; Jiang Z; Wierenga KJ
    Genet Med; 2018 Apr; 20(4):470-473. PubMed ID: 28837159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway networks generated from human disease phenome.
    Cirincione AG; Clark KL; Kann MG
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):75. PubMed ID: 30255817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Review on the research progress of mining of OMIM data].
    Li J; Li Z; Kang Y; Li L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1400-4. PubMed ID: 25868267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Unified Medical Language System (UMLS): integrating biomedical terminology.
    Bodenreider O
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D267-70. PubMed ID: 14681409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping Phenotypic Information in Heterogeneous Textual Sources to a Domain-Specific Terminological Resource.
    Alnazzawi N; Thompson P; Ananiadou S
    PLoS One; 2016; 11(9):e0162287. PubMed ID: 27643689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics.
    James RA; Campbell IM; Chen ES; Boone PM; Rao MA; Bainbridge MN; Lupski JR; Yang Y; Eng CM; Posey JE; Shaw CA
    Genome Med; 2016 Feb; 8(1):13. PubMed ID: 26838676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of Natural Language Processing Techniques in Bioinformatics.
    Zeng Z; Shi H; Wu Y; Hong Z
    Comput Math Methods Med; 2015; 2015():674296. PubMed ID: 26525745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CGMIM: automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify genetically-associated cancers and candidate genes.
    Bajdik CD; Kuo B; Rusaw S; Jones S; Brooks-Wilson A
    BMC Bioinformatics; 2005 Mar; 6():78. PubMed ID: 15796777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature.
    Ravikumar KE; Wagholikar KB; Li D; Kocher JP; Liu H
    BMC Bioinformatics; 2015 Jun; 16():185. PubMed ID: 26047637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Textpresso: an ontology-based information retrieval and extraction system for biological literature.
    Müller HM; Kenny EE; Sternberg PW
    PLoS Biol; 2004 Nov; 2(11):e309. PubMed ID: 15383839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking the clinical vocabulary of diseases to the genes by mapping UMLS to OMIM allelic variant fields.
    Hishiki T; Tamada I
    AMIA Annu Symp Proc; 2007 Oct; ():976. PubMed ID: 18694076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.
    Masino AJ; Dechene ET; Dulik MC; Wilkens A; Spinner NB; Krantz ID; Pennington JW; Robinson PN; White PS
    BMC Bioinformatics; 2014 Jul; 15(1):248. PubMed ID: 25047600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inherited disorder phenotypes: controlled annotation and statistical analysis for knowledge mining from gene lists.
    Masseroli M; Galati O; Manzotti M; Gibert K; Pinciroli F
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S18. PubMed ID: 16351744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving search over Electronic Health Records using UMLS-based query expansion through random walks.
    Martinez D; Otegi A; Soroa A; Agirre E
    J Biomed Inform; 2014 Oct; 51():100-6. PubMed ID: 24768598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tool for sharing annotated research data: the "Category 0" UMLS (Unified Medical Language System) vocabularies.
    Berman JJ
    BMC Med Inform Decis Mak; 2003 Jun; 3():6. PubMed ID: 12809560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.