BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21362445)

  • 1. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid.
    Okibe N; Suzuki N; Inui M; Yukawa H
    J Microbiol Methods; 2011 May; 85(2):155-63. PubMed ID: 21362445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-sensitive cloning vector for Corynebacterium glutamicum.
    Nakamura J; Kanno S; Kimura E; Matsui K; Nakamatsu T; Wachi M
    Plasmid; 2006 Nov; 56(3):179-86. PubMed ID: 16828161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum.
    Tsuchida Y; Kimura S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1855-66. PubMed ID: 20552356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum.
    Tan Y; Xu D; Li Y; Wang X
    Plasmid; 2012 Jan; 67(1):44-52. PubMed ID: 22100974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector.
    Tsuchida Y; Kimura S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1107-15. PubMed ID: 18936936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
    Tauch A; Kirchner O; Löffler B; Götker S; Pühler A; Kalinowski J
    Curr Microbiol; 2002 Nov; 45(5):362-7. PubMed ID: 12232668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antisense-RNA-mediated plasmid copy number control in pCG1-family plasmids, pCGR2 and pCG1, in Corynebacterium glutamicum.
    Okibe N; Suzuki N; Inui M; Yukawa H
    Microbiology (Reading); 2010 Dec; 156(Pt 12):3609-3623. PubMed ID: 20798162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmid copy number mutation in repA gene encoding RepA replication initiator of cryptic plasmid pHM1519 in Corynebacterium glutamicum.
    Hashiro S; Yasueda H
    Biosci Biotechnol Biochem; 2018 Dec; 82(12):2212-2224. PubMed ID: 30122124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control.
    Hashiro S; Mitsuhashi M; Yasueda H
    J Biosci Bioeng; 2019 May; 127(5):529-538. PubMed ID: 30420330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum.
    Xu D; Tan Y; Shi F; Wang X
    Plasmid; 2010 Sep; 64(2):85-91. PubMed ID: 20580910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Construction of Corynebacterium glutamicum/E. coli shuttle promoter-probe vector].
    Li K; Zhao Z; Zhang YZ; Wang Y; Ding JY
    Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):191-6. PubMed ID: 17552218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a novel expression system for use in Corynebacterium glutamicum.
    Hu J; Li Y; Zhang H; Tan Y; Wang X
    Plasmid; 2014 Sep; 75():18-26. PubMed ID: 25108235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
    Hartmann M; Barsch A; Niehaus K; Pühler A; Tauch A; Kalinowski J
    Arch Microbiol; 2004 Oct; 182(4):299-312. PubMed ID: 15480574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a cryptic plasmid from Pseudomonas sp. and utilization of its temperature-sensitive derivatives for genetic manipulation.
    Chen L; Wang W; Sun W; Surette M; Duan K
    Plasmid; 2010 Sep; 64(2):110-7. PubMed ID: 20566404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum.
    Kim IK; Jeong WK; Lim SH; Hwang IK; Kim YH
    J Microbiol Methods; 2011 Jan; 84(1):128-30. PubMed ID: 20951172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.
    Li H; Zhang L; Guo W; Xu D
    J Microbiol Methods; 2016 Dec; 131():156-160. PubMed ID: 27793586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers.
    Xu J; Xia X; Zhang J; Guo Y; Qian H; Zhang W
    Plasmid; 2014 Mar; 72():9-17. PubMed ID: 24613758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cgl1281-encoding putative transporter of the cation diffusion facilitator family is responsible for alkali-tolerance in Corynebacterium glutamicum.
    Takeno S; Nakamura M; Fukai R; Ohnishi J; Ikeda M
    Arch Microbiol; 2008 Nov; 190(5):531-8. PubMed ID: 18592219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis.
    Knoppová M; Phensaijai M; Veselý M; Zemanová M; Nesvera J; Pátek M
    Curr Microbiol; 2007 Sep; 55(3):234-9. PubMed ID: 17657537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.