These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 21363969)

  • 1. Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation.
    Xi Y; Yao J; Chen R; Li W; He X
    Genome Res; 2011 May; 21(5):718-24. PubMed ID: 21363969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.
    Gutiérrez G; Millán-Zambrano G; Medina DA; Jordán-Pla A; Pérez-Ortín JE; Peñate X; Chávez S
    Epigenetics Chromatin; 2017 Dec; 10(1):58. PubMed ID: 29212533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MNase-Sensitive Complexes in Yeast: Nucleosomes and Non-histone Barriers.
    Chereji RV; Ocampo J; Clark DJ
    Mol Cell; 2017 Feb; 65(3):565-577.e3. PubMed ID: 28157509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome fragility is associated with future transcriptional response to developmental cues and stress in C. elegans.
    Jeffers TE; Lieb JD
    Genome Res; 2017 Jan; 27(1):75-86. PubMed ID: 27979995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. nucMACC: An MNase-seq pipeline to identify structurally altered nucleosomes in the genome.
    Wernig-Zorc S; Kugler F; Schmutterer L; Räß P; Hausmann C; Holzinger S; Längst G; Schwartz U
    Sci Adv; 2024 Jul; 10(27):eadm9740. PubMed ID: 38959309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq).
    Hoeijmakers WAM; Bártfai R
    Methods Mol Biol; 2018; 1689():83-101. PubMed ID: 29027167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast.
    Brahma S; Henikoff S
    Mol Cell; 2019 Jan; 73(2):238-249.e3. PubMed ID: 30554944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MNase Profiling of Promoter Chromatin in
    Cole L; Dennis J
    G3 (Bethesda); 2020 Jul; 10(7):2171-2178. PubMed ID: 32404364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons.
    Rizzo JM; Bard JE; Buck MJ
    BMC Mol Biol; 2012 May; 13():15. PubMed ID: 22559821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization.
    Gkikopoulos T; Schofield P; Singh V; Pinskaya M; Mellor J; Smolle M; Workman JL; Barton GJ; Owen-Hughes T
    Science; 2011 Sep; 333(6050):1758-60. PubMed ID: 21940898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo.
    Fuse T; Katsumata K; Morohoshi K; Mukai Y; Ichikawa Y; Kurumizaka H; Yanagida A; Urano T; Kato H; Shimizu M
    PLoS One; 2017; 12(10):e0186974. PubMed ID: 29073207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosomes unfold completely at a transcriptionally active promoter.
    Boeger H; Griesenbeck J; Strattan JS; Kornberg RD
    Mol Cell; 2003 Jun; 11(6):1587-98. PubMed ID: 12820971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function.
    de Jonge WJ; Brok M; Lijnzaad P; Kemmeren P; Holstege FC
    Mol Syst Biol; 2020 Oct; 16(10):e9885. PubMed ID: 33280256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of micrococcal nuclease digestion on nucleosome positioning data.
    Chung HR; Dunkel I; Heise F; Linke C; Krobitsch S; Ehrenhofer-Murray AE; Sperling SR; Vingron M
    PLoS One; 2010 Dec; 5(12):e15754. PubMed ID: 21206756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast.
    Kubik S; Bruzzone MJ; Jacquet P; Falcone JL; Rougemont J; Shore D
    Mol Cell; 2015 Nov; 60(3):422-34. PubMed ID: 26545077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize.
    Vera DL; Madzima TF; Labonne JD; Alam MP; Hoffman GG; Girimurugan SB; Zhang J; McGinnis KM; Dennis JH; Bass HW
    Plant Cell; 2014 Oct; 26(10):3883-93. PubMed ID: 25361955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosome-positioning sequence repeats impact chromatin silencing in yeast minichromosomes.
    Chakraborty SA; Kazi AA; Khan TM; Grigoryev SA
    Genetics; 2014 Nov; 198(3):1015-29. PubMed ID: 25189873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric nucleosomes flank promoters in the budding yeast genome.
    Ramachandran S; Zentner GE; Henikoff S
    Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.
    Berbenetz NM; Nislow C; Brown GW
    PLoS Genet; 2010 Sep; 6(9):e1001092. PubMed ID: 20824081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling Nucleosome Occupancy by MNase-seq: Experimental Protocol and Computational Analysis.
    Pajoro A; Muiño JM; Angenent GC; Kaufmann K
    Methods Mol Biol; 2018; 1675():167-181. PubMed ID: 29052192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.