BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21364483)

  • 1. Effect of training load structure on purine metabolism in middle-distance runners.
    Zieliński J; Kusy K; Rychlewski T
    Med Sci Sports Exerc; 2011 Sep; 43(9):1798-807. PubMed ID: 21364483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes.
    Zielinski J; Kusy K
    J Appl Physiol (1985); 2012 Feb; 112(4):542-51. PubMed ID: 22162524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in purine metabolism in middle-aged elite, amateur, and recreational runners across a 1-year training cycle.
    Zieliński J; Kusy K; Słomińska E
    Eur J Appl Physiol; 2013 Mar; 113(3):763-73. PubMed ID: 22965897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of endurance training on changes in purine metabolism: a longitudinal study of competitive long-distance runners.
    Zieliński J; Rychlewski T; Kusy K; Domaszewska K; Laurentowska M
    Eur J Appl Physiol; 2009 Aug; 106(6):867-76. PubMed ID: 19479277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxanthine as a predictor of performance in highly trained athletes.
    Zieliński J; Krasińska B; Kusy K
    Int J Sports Med; 2013 Dec; 34(12):1079-86. PubMed ID: 23670363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purine metabolism in sprint- vs endurance-trained athletes aged 20‒90 years.
    Zieliński J; Slominska EM; Król-Zielińska M; Krasiński Z; Kusy K
    Sci Rep; 2019 Aug; 9(1):12075. PubMed ID: 31427706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off seasonal and pre-seasonal assessment of circulating energy sources during prolonged running at the anaerobic threshold in competitive triathletes.
    Knoepfli B; Riddell MC; Ganzoni E; Burki A; Villiger B; von Duvillard SP
    Br J Sports Med; 2004 Aug; 38(4):402-7. PubMed ID: 15273171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects.
    Dudzinska W; Suska M; Lubkowska A; Jakubowska K; Olszewska M; Safranow K; Chlubek D
    J Physiol Sci; 2018 May; 68(3):293-305. PubMed ID: 28432611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological determinants of speciality of elite middle- and long-distance runners.
    Rabadán M; Díaz V; Calderón FJ; Benito PJ; Peinado AB; Maffulli N
    J Sports Sci; 2011 Jun; 29(9):975-82. PubMed ID: 21604227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overproduction of uric acid in hypoxanthine-guanine phosphoribosyltransferase deficiency. Contribution by impaired purine salvage.
    Edwards NL; Recker D; Fox IH
    J Clin Invest; 1979 May; 63(5):922-30. PubMed ID: 447834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Blood Concentration of Adenosine Triphosphate Metabolism Biomarkers During Incremental Exercise in Highly Trained Athletes of Different Sport Specializations.
    Włodarczyk M; Kusy K; Słomińska E; Krasiński Z; Zieliński J
    J Strength Cond Res; 2019 May; 33(5):1192-1200. PubMed ID: 30908377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in Lactate, Ammonia, and Hypoxanthine Concentrations in a 1-Year Training Cycle in Highly Trained Athletes: Applying Biomarkers as Tools to Assess Training Status.
    Włodarczyk M; Kusy K; Słomińska E; Krasiński Z; Zieliński J
    J Strength Cond Res; 2020 Feb; 34(2):355-364. PubMed ID: 31469767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of high-intensity training on purine metabolism in man.
    Hellsten-Westing Y; Balsom PD; Norman B; Sjödin B
    Acta Physiol Scand; 1993 Dec; 149(4):405-12. PubMed ID: 8128888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theophylline-induced increase in plasma uric acid--purine catabolism increased by theophylline.
    Yamamoto T; Moriwaki Y; Suda M; Takahashi S; Hiroishi K; Higashino K
    Int J Clin Pharmacol Ther Toxicol; 1991 Jul; 29(7):257-61. PubMed ID: 1889911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced training volume and intensity maintain aerobic capacity but not performance in distance runners.
    McConell GK; Costill DL; Widrick JJ; Hickey MS; Tanaka H; Gastin PB
    Int J Sports Med; 1993 Jan; 14(1):33-7. PubMed ID: 8440543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between VO2max and the aerobic demand of running in elite distance runners.
    Morgan DW; Daniels JT
    Int J Sports Med; 1994 Oct; 15(7):426-9. PubMed ID: 8002123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No effect of 5% hypohydration on running economy of competitive runners at 23 degrees C.
    Armstrong LE; Whittlesey MJ; Casa DJ; Elliott TA; Kavouras SA; Keith NR; Maresh CM
    Med Sci Sports Exerc; 2006 Oct; 38(10):1762-9. PubMed ID: 17019298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring 6 weeks of progressive endurance training with plasma glutamine.
    Kargotich S; Keast D; Goodman C; Bhagat CI; Joske DJ; Dawson B; Morton AR
    Int J Sports Med; 2007 Mar; 28(3):211-6. PubMed ID: 17024635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ratio HLa : RPE as a tool to appreciate overreaching in young high-level middle-distance runners.
    Garcin M; Fleury A; Billat V
    Int J Sports Med; 2002 Jan; 23(1):16-21. PubMed ID: 11774061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of low-intensity endurance training.
    Meyer T; Auracher M; Heeg K; Urhausen A; Kindermann W
    Int J Sports Med; 2007 Jan; 28(1):33-9. PubMed ID: 17213964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.