BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21364703)

  • 21. [Fine, ultrafine and nano- particles in the living and working setting: potential health effects and measurement of inhalation exposure].
    Marconi A
    G Ital Med Lav Ergon; 2006; 28(3):258-65. PubMed ID: 17144413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facing the key workplace challenge: assessing and preventing exposure to nanoparticles at source.
    Hämeri K; Lähde T; Hussein T; Koivisto J; Savolainen K
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():17-24. PubMed ID: 19558229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities.
    Methner M; Beaucham C; Crawford C; Hodson L; Geraci C
    J Occup Environ Hyg; 2012; 9(9):543-55. PubMed ID: 22816668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the TRA ECETOC model for inhalation workplace exposure to different organic solvents for selected process categories.
    Kupczewska-Dobecka M; Czerczak S; Jakubowski M
    Int J Occup Med Environ Health; 2011 Jun; 24(2):208-17. PubMed ID: 21537889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conceptual model for assessment of inhalation exposure: defining modifying factors.
    Tielemans E; Schneider T; Goede H; Tischer M; Warren N; Kromhout H; Van Tongeren M; Van Hemmen J; Cherrie JW
    Ann Occup Hyg; 2008 Oct; 52(7):577-86. PubMed ID: 18787181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exposure to manufactured nanostructured particles in an industrial pilot plant.
    Demou E; Peter P; Hellweg S
    Ann Occup Hyg; 2008 Nov; 52(8):695-706. PubMed ID: 18931382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Risk assessment of exposure to indoor aerosols associated with Chinese cooking.
    See SW; Balasubramanian R
    Environ Res; 2006 Oct; 102(2):197-204. PubMed ID: 16457802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of recommended REACH exposure modeling tools and near-field, far-field model in assessing occupational exposure to toluene from spray paint.
    Hofstetter E; Spencer JW; Hiteshew K; Coutu M; Nealley M
    Ann Occup Hyg; 2013 Mar; 57(2):210-20. PubMed ID: 23002273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exposure characterization of metal oxide nanoparticles in the workplace.
    Curwin B; Bertke S
    J Occup Environ Hyg; 2011 Oct; 8(10):580-7. PubMed ID: 21936697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of compressive strength and applied force in concrete on particles exposure concentrations during cutting processes.
    Soo JC; Tsai PJ; Chen CH; Chen MR; Hsu HI; Wu TN
    Sci Total Environ; 2011 Aug; 409(17):3124-8. PubMed ID: 21621248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver.
    Lee JH; Kwon M; Ji JH; Kang CS; Ahn KH; Han JH; Yu IJ
    Inhal Toxicol; 2011 Mar; 23(4):226-36. PubMed ID: 21456955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Airborne endotoxin associated with particles of different sizes and affected by water content in handled straw.
    Madsen AM; Nielsen SH
    Int J Hyg Environ Health; 2010 Jul; 213(4):278-84. PubMed ID: 20362504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental investigation of the concept of a 'breathing zone' using a mannequin exposed to a point source of inertial/sedimenting particles emitted with momentum.
    Lidén G; Waher J
    Ann Occup Hyg; 2010 Jan; 54(1):100-16. PubMed ID: 19955328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examining the importance of the particle size effect in inhalation dose assessment for short-term radiological events.
    Srimok B; Yim MS
    Radiat Prot Dosimetry; 2011 Nov; 147(3):439-50. PubMed ID: 21156784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticles-containing spray can aerosol: characterization, exposure assessment, and generator design.
    Chen BT; Afshari A; Stone S; Jackson M; Schwegler-Berry D; Frazer DG; Castranova V; Thomas TA
    Inhal Toxicol; 2010 Nov; 22(13):1072-82. PubMed ID: 20939689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing exposure zones by different exposure metrics using statistical parameters: contrast and precision.
    Park JY; Ramachandran G; Raynor PC; Eberly LE; Olson G
    Ann Occup Hyg; 2010 Oct; 54(7):799-812. PubMed ID: 20584861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intra-urban variability of air pollution in Windsor, Ontario--measurement and modeling for human exposure assessment.
    Wheeler AJ; Smith-Doiron M; Xu X; Gilbert NL; Brook JR
    Environ Res; 2008 Jan; 106(1):7-16. PubMed ID: 17961539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concept to estimate regional inhalation dose of industrially synthesized nanoparticles.
    Koivisto AJ; Aromaa M; Mäkelä JM; Pasanen P; Hussein T; Hämeri K
    ACS Nano; 2012 Feb; 6(2):1195-203. PubMed ID: 22206417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Model-based assessment for human inhalation exposure risk to airborne nano/fine titanium dioxide particles.
    Liao CM; Chiang YH; Chio CP
    Sci Total Environ; 2008 Dec; 407(1):165-77. PubMed ID: 18952258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.