These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 21364730)
1. Methodology for third-order astigmatism compensation in off-axis spherical reflective systems. Gomez-Vieyra A; Malacara-Hernández D Appl Opt; 2011 Mar; 50(7):1057-64. PubMed ID: 21364730 [TBL] [Abstract][Full Text] [Related]
2. Linear astigmatism of confocal off-axis reflective imaging systems with N-conic mirrors and its elimination. Chang S J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):852-9. PubMed ID: 26366909 [TBL] [Abstract][Full Text] [Related]
3. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes. Gómez-Vieyra A; Dubra A; Malacara-Hernández D; Williams DR Opt Express; 2009 Oct; 17(21):18906-19. PubMed ID: 20372626 [TBL] [Abstract][Full Text] [Related]
4. Correction of astigmatism and coma using analytic theory of aberrations in imaging spectrometer based on concentric off-axis dual reflector system. Chen TA; Tang Y; Zhang LJ; Chang YE; Zheng C Appl Opt; 2014 Feb; 53(4):565-76. PubMed ID: 24514173 [TBL] [Abstract][Full Text] [Related]
5. Linear astigmatism of confocal off-axis reflective imaging systems and its elimination. Chang S; Lee JH; Kim SP; Kim H; Kim WJ; Song I; Park Y Appl Opt; 2006 Jan; 45(3):484-8. PubMed ID: 16463732 [TBL] [Abstract][Full Text] [Related]
6. Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes. Chang S; Prata A J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2454-64. PubMed ID: 16302396 [TBL] [Abstract][Full Text] [Related]
10. Image quality in telescopes with image motion compensation by secondary mirror control. Bottema M; Woodruff RA Appl Opt; 1972 Dec; 11(12):2965-7. PubMed ID: 20119435 [TBL] [Abstract][Full Text] [Related]
11. Coating-induced wave-front aberrations: on-axis astigmatism and chromatic aberration in all-reflecting systems. Reiley DJ; Chipman RA Appl Opt; 1994 Apr; 33(10):2002-12. PubMed ID: 20885536 [TBL] [Abstract][Full Text] [Related]
12. Generalized design of a zero-geometric-loss, astigmatism-free, modified four-objective multipass matrix system. Guo Y; Sun L; Yang Z; Liu Z Appl Opt; 2016 Feb; 55(6):1435-43. PubMed ID: 26906598 [TBL] [Abstract][Full Text] [Related]
13. Imaging properties of off-axis parabolic mirrors. Howard JE Appl Opt; 1979 Aug; 18(15):2714-22. PubMed ID: 20212734 [TBL] [Abstract][Full Text] [Related]
14. Aberrations of a sequence of conic mirrors. Kleinhans WA Appl Opt; 1976 Sep; 15(9):2283-8. PubMed ID: 20165375 [TBL] [Abstract][Full Text] [Related]
15. Construction method through multiple off-axis parabolic surfaces expansion and mixing to design an easy-aligned freeform spectrometer. Chen L; Gao Z; Ye J; Cao X; Xu N; Yuan Q Opt Express; 2019 Sep; 27(18):25994-26013. PubMed ID: 31510461 [TBL] [Abstract][Full Text] [Related]
16. Variant of the anastigmatic telescope with three mirrors for back focal length. Herrera J; Vázquez S; Luna E; Salas L; Nuñez J; Sohn E; Ruiz E Appl Opt; 2011 May; 50(13):1905-14. PubMed ID: 21532673 [TBL] [Abstract][Full Text] [Related]
17. Ray tracing in spectrometers with plane gratings and off-axis parabolas, including a new double pass system. Eggers DF; Peterson MA Appl Opt; 1969 Mar; 8(3):589-92. PubMed ID: 20072264 [TBL] [Abstract][Full Text] [Related]
18. Geometric optics of arrays of reflective surfaces. Chapman HN; Rode AV Appl Opt; 1994 May; 33(13):2419-36. PubMed ID: 20885592 [TBL] [Abstract][Full Text] [Related]