These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 21364764)
1. The roles of transmembrane domain helix-III during rhodopsin photoactivation. Ou WB; Yi T; Kim JM; Khorana HG PLoS One; 2011 Feb; 6(2):e17398. PubMed ID: 21364764 [TBL] [Abstract][Full Text] [Related]
2. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation. Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036 [TBL] [Abstract][Full Text] [Related]
3. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034 [TBL] [Abstract][Full Text] [Related]
4. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4. Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971 [TBL] [Abstract][Full Text] [Related]
5. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin. Han M; Lin SW; Smith SO; Sakmar TP J Biol Chem; 1996 Dec; 271(50):32330-6. PubMed ID: 8943295 [TBL] [Abstract][Full Text] [Related]
6. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation. Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958 [TBL] [Abstract][Full Text] [Related]
7. Conformational changes in rhodopsin. Movement of helix f detected by site-specific chemical labeling and fluorescence spectroscopy. Dunham TD; Farrens DL J Biol Chem; 1999 Jan; 274(3):1683-90. PubMed ID: 9880548 [TBL] [Abstract][Full Text] [Related]
8. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Han M; Smith SO; Sakmar TP Biochemistry; 1998 Jun; 37(22):8253-61. PubMed ID: 9609722 [TBL] [Abstract][Full Text] [Related]
9. Critical role of electrostatic interactions of amino acids at the cytoplasmic region of helices 3 and 6 in rhodopsin conformational properties and activation. Ramon E; Cordomí A; Bosch L; Zernii EY; Senin II; Manyosa J; Philippov PP; Pérez JJ; Garriga P J Biol Chem; 2007 May; 282(19):14272-82. PubMed ID: 17322302 [TBL] [Abstract][Full Text] [Related]
10. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Altenbach C; Cai K; Khorana HG; Hubbell WL Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035 [TBL] [Abstract][Full Text] [Related]
11. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Altenbach C; Yang K; Farrens DL; Farahbakhsh ZT; Khorana HG; Hubbell WL Biochemistry; 1996 Sep; 35(38):12470-8. PubMed ID: 8823182 [TBL] [Abstract][Full Text] [Related]
12. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527 [TBL] [Abstract][Full Text] [Related]
13. Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. Altenbach C; Klein-Seetharaman J; Hwa J; Khorana HG; Hubbell WL Biochemistry; 1999 Jun; 38(25):7945-9. PubMed ID: 10387037 [TBL] [Abstract][Full Text] [Related]
14. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1. Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970 [TBL] [Abstract][Full Text] [Related]
15. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels. Yang K; Farrens DL; Altenbach C; Farahbakhsh ZT; Hubbell WL; Khorana HG Biochemistry; 1996 Nov; 35(45):14040-6. PubMed ID: 8916888 [TBL] [Abstract][Full Text] [Related]
16. Mapping of the amino acids in the cytoplasmic loop connecting helices C and D in rhodopsin. Chemical reactivity in the dark state following single cysteine replacements. Ridge KD; Zhang C; Khorana HG Biochemistry; 1995 Jul; 34(27):8804-11. PubMed ID: 7612621 [TBL] [Abstract][Full Text] [Related]
17. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8. Altenbach C; Cai K; Klein-Seetharaman J; Khorana HG; Hubbell WL Biochemistry; 2001 Dec; 40(51):15483-92. PubMed ID: 11747423 [TBL] [Abstract][Full Text] [Related]
18. Intramolecular interactions that induce helical rearrangement upon rhodopsin activation: light-induced structural changes in metarhodopsin IIa probed by cysteine S-H stretching vibrations. Yamazaki Y; Nagata T; Terakita A; Kandori H; Shichida Y; Imamoto Y J Biol Chem; 2014 May; 289(20):13792-800. PubMed ID: 24692562 [TBL] [Abstract][Full Text] [Related]
19. Structure and function in rhodopsin: topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops. Cai K; Langen R; Hubbell WL; Khorana HG Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14267-72. PubMed ID: 9405601 [TBL] [Abstract][Full Text] [Related]