BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21365008)

  • 1. Incorporation of local structural preference potential improves fold recognition.
    Hu Y; Dong X; Wu A; Cao Y; Tian L; Jiang T
    PLoS One; 2011 Feb; 6(2):e17215. PubMed ID: 21365008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments.
    Zhou H; Zhou Y
    Proteins; 2005 Feb; 58(2):321-8. PubMed ID: 15523666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A contact energy function considering residue hydrophobic environment and its application in protein fold recognition.
    Duan MJ; Zhou YH
    Genomics Proteomics Bioinformatics; 2005 Nov; 3(4):218-24. PubMed ID: 16689689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a structural alphabet to find compatible folds for amino acid sequences.
    Mahajan S; de Brevern AG; Sanejouand YH; Srinivasan N; Offmann B
    Protein Sci; 2015 Jan; 24(1):145-53. PubMed ID: 25297700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence comparison and protein structure prediction.
    Dunbrack RL
    Curr Opin Struct Biol; 2006 Jun; 16(3):374-84. PubMed ID: 16713709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective inter-residue contact definitions for accurate protein fold recognition.
    Yuan C; Chen H; Kihara D
    BMC Bioinformatics; 2012 Nov; 13():292. PubMed ID: 23140471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition and remote homolog detection.
    Jung I; Lee J; Lee SY; Kim D
    BMC Bioinformatics; 2008 Jul; 9():298. PubMed ID: 18590572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting protein candidate fragments using a structural alphabet profile comparison approach.
    Shen Y; Picord G; Guyon F; Tuffery P
    PLoS One; 2013; 8(11):e80493. PubMed ID: 24303019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced protein fold recognition using a structural alphabet.
    Deschavanne P; Tufféry P
    Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pcons5: combining consensus, structural evaluation and fold recognition scores.
    Wallner B; Elofsson A
    Bioinformatics; 2005 Dec; 21(23):4248-54. PubMed ID: 16204344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognizing protein substructure similarity using segmental threading.
    Wu S; Zhang Y
    Structure; 2010 Jul; 18(7):858-67. PubMed ID: 20637422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support vector training of protein alignment models.
    Yu CN; Joachims T; Elber R; Pillardy J
    J Comput Biol; 2008 Sep; 15(7):867-80. PubMed ID: 18707536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of artificially evolved sequences in protein threading and fold recognition.
    Brylinski M
    J Theor Biol; 2013 Jul; 328():77-88. PubMed ID: 23542050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local function conservation in sequence and structure space.
    Weinhold N; Sander O; Domingues FS; Lengauer T; Sommer I
    PLoS Comput Biol; 2008 Jul; 4(7):e1000105. PubMed ID: 18604264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.