These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21365008)

  • 41. Search for the most stable folds of protein chains: III. Improvement in fold recognition by averaging over homologous sequences and 3D structures.
    Rykunov DS; Lobanov MY; Finkelstein AV
    Proteins; 2000 Aug; 40(3):494-501. PubMed ID: 10861941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combining evolutionary and structural information for local protein structure prediction.
    Pei J; Grishin NV
    Proteins; 2004 Sep; 56(4):782-94. PubMed ID: 15281130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MESSM: a framework for protein fold recognition using neural networks and support vector machines.
    Jiang N; Wu W; Mitchell I
    Int J Bioinform Res Appl; 2006; 2(4):381-93. PubMed ID: 18048179
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of protein structure classes with flexible neural tree.
    Bao W; Chen Y; Wang D
    Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HYPLOSP: a knowledge-based approach to protein local structure prediction.
    Chen CT; Lin HN; Sung TY; Hsu WL
    J Bioinform Comput Biol; 2006 Dec; 4(6):1287-307. PubMed ID: 17245815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Threading using neural nEtwork (TUNE): the measure of protein sequence-structure compatibility.
    Lin K; May AC; Taylor WR
    Bioinformatics; 2002 Oct; 18(10):1350-7. PubMed ID: 12376379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling protein loops with knowledge-based prediction of sequence-structure alignment.
    Peng HP; Yang AS
    Bioinformatics; 2007 Nov; 23(21):2836-42. PubMed ID: 17827204
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction.
    Wu S; Zhang Y
    Bioinformatics; 2008 Apr; 24(7):924-31. PubMed ID: 18296462
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new seed selection algorithm that maximizes local structural similarity in proteins.
    Altun G; Zhong W; Pan Y; Tai PC; Harrison RW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5822-5. PubMed ID: 17946336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benchmarking consensus model quality assessment for protein fold recognition.
    McGuffin LJ
    BMC Bioinformatics; 2007 Sep; 8():345. PubMed ID: 17877795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced protein fold recognition through a novel data integration approach.
    Ying Y; Huang K; Campbell C
    BMC Bioinformatics; 2009 Aug; 10():267. PubMed ID: 19709406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Incorporating secondary features into the general form of Chou's PseAAC for predicting protein structural class.
    Liao B; Xiang Q; Li D
    Protein Pept Lett; 2012 Nov; 19(11):1133-8. PubMed ID: 22185510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving protein fold recognition with hybrid profiles combining sequence and structure evolution.
    Ghouzam Y; Postic G; de Brevern AG; Gelly JC
    Bioinformatics; 2015 Dec; 31(23):3782-9. PubMed ID: 26254434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein fold recognition using the gradient boost algorithm.
    Jiao F; Xu J; Yu L; Schuurmans D
    Comput Syst Bioinformatics Conf; 2006; ():43-53. PubMed ID: 17369624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A machine learning information retrieval approach to protein fold recognition.
    Cheng J; Baldi P
    Bioinformatics; 2006 Jun; 22(12):1456-63. PubMed ID: 16547073
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Knowledge-based potential functions in protein design.
    Russ WP; Ranganathan R
    Curr Opin Struct Biol; 2002 Aug; 12(4):447-52. PubMed ID: 12163066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FORTE: a profile-profile comparison tool for protein fold recognition.
    Tomii K; Akiyama Y
    Bioinformatics; 2004 Mar; 20(4):594-5. PubMed ID: 14764565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.