These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21365008)

  • 61. Protein fold recognition using the gradient boost algorithm.
    Jiao F; Xu J; Yu L; Schuurmans D
    Comput Syst Bioinformatics Conf; 2006; ():43-53. PubMed ID: 17369624
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A machine learning information retrieval approach to protein fold recognition.
    Cheng J; Baldi P
    Bioinformatics; 2006 Jun; 22(12):1456-63. PubMed ID: 16547073
    [TBL] [Abstract][Full Text] [Related]  

  • 63. CONFOLD: Residue-residue contact-guided ab initio protein folding.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Proteins; 2015 Aug; 83(8):1436-49. PubMed ID: 25974172
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Knowledge-based potential functions in protein design.
    Russ WP; Ranganathan R
    Curr Opin Struct Biol; 2002 Aug; 12(4):447-52. PubMed ID: 12163066
    [TBL] [Abstract][Full Text] [Related]  

  • 65. FORTE: a profile-profile comparison tool for protein fold recognition.
    Tomii K; Akiyama Y
    Bioinformatics; 2004 Mar; 20(4):594-5. PubMed ID: 14764565
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Local structure-based sequence profile database for local and global protein structure predictions.
    Yang AS; Wang LY
    Bioinformatics; 2002 Dec; 18(12):1650-7. PubMed ID: 12490450
    [TBL] [Abstract][Full Text] [Related]  

  • 67. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
    Zheng W; Zhang C; Wuyun Q; Pearce R; Li Y; Zhang Y
    Nucleic Acids Res; 2019 Jul; 47(W1):W429-W436. PubMed ID: 31081035
    [TBL] [Abstract][Full Text] [Related]  

  • 68. DINAMO: a coupled sequence alignment editor/molecular graphics tool for interactive homology modeling of proteins.
    Hansen M; Bentz J; Baucom A; Gregoret L
    Pac Symp Biocomput; 1998; ():106-17. PubMed ID: 9697175
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An evolution-based approach to De Novo protein design and case study on Mycobacterium tuberculosis.
    Mitra P; Shultis D; Brender JR; Czajka J; Marsh D; Gray F; Cierpicki T; Zhang Y
    PLoS Comput Biol; 2013 Oct; 9(10):e1003298. PubMed ID: 24204234
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural fragments in protein model refinement.
    Hollup SM; Taylor WR; Jonassen I
    Protein Pept Lett; 2008; 15(9):964-71. PubMed ID: 18991773
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reduced amino acid alphabets exhibit an improved sensitivity and selectivity in fold assignment.
    Peterson EL; Kondev J; Theriot JA; Phillips R
    Bioinformatics; 2009 Jun; 25(11):1356-62. PubMed ID: 19351620
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Knowledge-based prediction of protein backbone conformation using a structural alphabet.
    Vetrivel I; Mahajan S; Tyagi M; Hoffmann L; Sanejouand YH; Srinivasan N; de Brevern AG; Cadet F; Offmann B
    PLoS One; 2017; 12(11):e0186215. PubMed ID: 29161266
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sequence and structural analysis of two designed proteins with 88% identity adopting different folds.
    Saravanan KM; Balasubramanian H; Nallusamy S; Samuel S
    Protein Eng Des Sel; 2010 Dec; 23(12):911-8. PubMed ID: 20952437
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A spectral approach to protein structure alignment.
    Shibberu Y; Holder A
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):867-75. PubMed ID: 21301031
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Profile-based direct kernels for remote homology detection and fold recognition.
    Rangwala H; Karypis G
    Bioinformatics; 2005 Dec; 21(23):4239-47. PubMed ID: 16188929
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel fold recognition method using composite predicted secondary structures.
    An Y; Friesner RA
    Proteins; 2002 Aug; 48(2):352-66. PubMed ID: 12112702
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Local structure prediction with local structure-based sequence profiles.
    Yang AS; Wang LY
    Bioinformatics; 2003 Jul; 19(10):1267-74. PubMed ID: 12835271
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.
    Kurgan L; Cios K; Chen K
    BMC Bioinformatics; 2008 May; 9():226. PubMed ID: 18452616
    [TBL] [Abstract][Full Text] [Related]  

  • 80. FRankenstein becomes a cyborg: the automatic recombination and realignment of fold recognition models in CASP6.
    Kosinski J; Gajda MJ; Cymerman IA; Kurowski MA; Pawlowski M; Boniecki M; Obarska A; Papaj G; Sroczynska-Obuchowicz P; Tkaczuk KL; Sniezynska P; Sasin JM; Augustyn A; Bujnicki JM; Feder M
    Proteins; 2005; 61 Suppl 7():106-113. PubMed ID: 16187351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.