These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 21365181)
1. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Liu H; Liu K; Yan M; Xu L; Ouyang P Appl Biochem Biotechnol; 2011 Aug; 164(7):1150-9. PubMed ID: 21365181 [TBL] [Abstract][Full Text] [Related]
2. [Effects of mutational sptl5 gene to xylose utilization of Saccharomyces cerevisiae]. Liu H; Tang W; Lai C; Yan M; Xu L; Ouyang P Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):875-9. PubMed ID: 19777815 [TBL] [Abstract][Full Text] [Related]
3. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Liu H; Yan M; Lai C; Xu L; Ouyang P Appl Biochem Biotechnol; 2010 Jan; 160(2):574-82. PubMed ID: 19067246 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Ohgren K; Bengtsson O; Gorwa-Grauslund MF; Galbe M; Hahn-Hägerdal B; Zacchi G J Biotechnol; 2006 Dec; 126(4):488-98. PubMed ID: 16828190 [TBL] [Abstract][Full Text] [Related]
5. Ethanol production from corn cob hydrolysates by Escherichia coli KO11. de Carvalho Lima KG; Takahashi CM; Alterthum F J Ind Microbiol Biotechnol; 2002 Sep; 29(3):124-8. PubMed ID: 12242633 [TBL] [Abstract][Full Text] [Related]
6. [gTME for construction of recombinant yeast co-fermenting xylose and glucose]. Liu H; Xu L; Yan M; Lai C; Ouyang P Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1010-5. PubMed ID: 18807984 [TBL] [Abstract][Full Text] [Related]
7. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martín C; Marcet M; Almazán O; Jönsson LJ Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451 [TBL] [Abstract][Full Text] [Related]
8. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Lu Y; Warner R; Sedlak M; Ho N; Mosier NS Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980 [TBL] [Abstract][Full Text] [Related]
9. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. Casey E; Sedlak M; Ho NW; Mosier NS FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796 [TBL] [Abstract][Full Text] [Related]
10. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119 [TBL] [Abstract][Full Text] [Related]
11. Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production. Fan JX; Yang XX; Song JZ; Huang XM; Cheng ZX; Yao L; Juba OS; Liang Q; Yang Q; Odeph M; Sun Y; Wang Y Appl Biochem Biotechnol; 2011 Aug; 164(7):1023-36. PubMed ID: 21394668 [TBL] [Abstract][Full Text] [Related]
12. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
13. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp]. Fang XN; Huang W; Xia LM Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126 [TBL] [Abstract][Full Text] [Related]
14. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Yu Z; Zhang H Bioresour Technol; 2004 Jun; 93(2):199-204. PubMed ID: 15051082 [TBL] [Abstract][Full Text] [Related]
15. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae]. Shen Y; Wang Y; Bao XM; Qu YB Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A; Pereira F; Johansson B; Domingues L Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [TBL] [Abstract][Full Text] [Related]
17. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779 [TBL] [Abstract][Full Text] [Related]
18. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Katahira S; Mizuike A; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564 [TBL] [Abstract][Full Text] [Related]
19. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
20. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]