These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21365688)

  • 1. The ensemble folding kinetics of the FBP28 WW domain revealed by an all-atom Monte Carlo simulation in a knowledge-based potential.
    Xu J; Huang L; Shakhnovich EI
    Proteins; 2011 Jun; 79(6):1704-14. PubMed ID: 21365688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universality and diversity of folding mechanics for three-helix bundle proteins.
    Yang JS; Wallin S; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):895-900. PubMed ID: 18195374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phi-analysis at the experimental limits: mechanism of beta-hairpin formation.
    Petrovich M; Jonsson AL; Ferguson N; Daggett V; Fersht AR
    J Mol Biol; 2006 Jul; 360(4):865-81. PubMed ID: 16784750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding, misfolding, and amyloid protofibril formation of WW domain FBP28.
    Mu Y; Nordenskiöld L; Tam JP
    Biophys J; 2006 Jun; 90(11):3983-92. PubMed ID: 16533840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energy landscape of the FBP28 WW domain by all-atom direct folding simulation.
    Kim E; Jang S; Lim M; Pak Y
    J Phys Chem B; 2010 Jun; 114(22):7686-91. PubMed ID: 20465282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preventing fibril formation of a protein by selective mutation.
    Maisuradze GG; Medina J; Kachlishvili K; Krupa P; Mozolewska MA; Martin-Malpartida P; Maisuradze L; Macias MJ; Scheraga HA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13549-54. PubMed ID: 26483482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the turn in beta-hairpin formation during WW domain folding.
    Sharpe T; Jonsson AL; Rutherford TJ; Daggett V; Fersht AR
    Protein Sci; 2007 Oct; 16(10):2233-9. PubMed ID: 17766370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constrained proper sampling of conformations of transition state ensemble of protein folding.
    Lin M; Zhang J; Lu HM; Chen R; Liang J
    J Chem Phys; 2011 Feb; 134(7):075103. PubMed ID: 21341875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the ligand-binding specificity and analyzing the folding state of SPOT-synthesized FBP28 WW domain variants.
    Przezdziak J; Tremmel S; Kretzschmar I; Beyermann M; Bienert M; Volkmer-Engert R
    Chembiochem; 2006 May; 7(5):780-8. PubMed ID: 16575938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
    Maisuradze GG; Zhou R; Liwo A; Xiao Y; Scheraga HA
    J Mol Biol; 2012 Jul; 420(4-5):350-65. PubMed ID: 22560992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations.
    Lei H; Wu C; Wang ZX; Zhou Y; Duan Y
    J Chem Phys; 2008 Jun; 128(23):235105. PubMed ID: 18570534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of the beta-sheet of the WW domain: A molecular dynamics simulation study.
    Ibragimova GT; Wade RC
    Biophys J; 1999 Oct; 77(4):2191-8. PubMed ID: 10512838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
    Maisuradze GG; Senet P; Czaplewski C; Liwo A; Scheraga HA
    J Phys Chem A; 2010 Apr; 114(13):4471-85. PubMed ID: 20166738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.
    Zhou R; Maisuradze GG; Suñol D; Todorovski T; Macias MJ; Xiao Y; Scheraga HA; Czaplewski C; Liwo A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18243-8. PubMed ID: 25489078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding mechanisms of individual beta-hairpins in a Go model of Pin1 WW domain by all-atom molecular dynamics simulations.
    Luo Z; Ding J; Zhou Y
    J Chem Phys; 2008 Jun; 128(22):225103. PubMed ID: 18554060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid amyloid fiber formation from the fast-folding WW domain FBP28.
    Ferguson N; Berriman J; Petrovich M; Sharpe TD; Finch JT; Fersht AR
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9814-9. PubMed ID: 12897238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition states in protein folding kinetics: modeling phi-values of small beta-sheet proteins.
    Weikl TR
    Biophys J; 2008 Feb; 94(3):929-37. PubMed ID: 17905840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Un)Folding mechanisms of the FBP28 WW domain in explicit solvent revealed by multiple rare event simulation methods.
    Juraszek J; Bolhuis PG
    Biophys J; 2010 Feb; 98(4):646-56. PubMed ID: 20159161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-atom ab initio folding of a diverse set of proteins.
    Yang JS; Chen WW; Skolnick J; Shakhnovich EI
    Structure; 2007 Jan; 15(1):53-63. PubMed ID: 17223532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model.
    Luo Z; Ding J; Zhou Y
    Biophys J; 2007 Sep; 93(6):2152-61. PubMed ID: 17513360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.