These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21365691)

  • 1. Cell-based drug delivery devices using phagocytosis-resistant backpacks.
    Doshi N; Swiston AJ; Gilbert JB; Alcaraz ML; Cohen RE; Rubner MF; Mitragotri S
    Adv Mater; 2011 Mar; 23(12):H105-9. PubMed ID: 21365691
    [No Abstract]   [Full Text] [Related]  

  • 2. Phospholipid-modified poly(lactide-co-glycolide) microparticles for tuning the interaction with alveolar macrophages: In vitro and in vivo assessment.
    Li J; Zheng H; Li X; Su J; Qin L; Sun Y; Guo C; Beck-Broichsitter M; Moehwald M; Chen L; Zhang Y; Mao S
    Eur J Pharm Biopharm; 2019 Oct; 143():70-79. PubMed ID: 31446045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.
    Anselmo AC; Gilbert JB; Kumar S; Gupta V; Cohen RE; Rubner MF; Mitragotri S
    J Control Release; 2015 Feb; 199():29-36. PubMed ID: 25481443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: a novel paclitaxel drug delivery vehicle.
    Singh AV; Batuwangala M; Mundra R; Mehta K; Patke S; Falletta E; Patil R; Gade WN
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14679-89. PubMed ID: 25046687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted delivery of tungsten oxide nanoparticles for multifunctional anti-tumor therapy via macrophages.
    Zheng B; Bai Y; Chen H; Pan H; Ji W; Gong X; Wu X; Wang H; Chang J
    Biomater Sci; 2018 May; 6(6):1379-1389. PubMed ID: 29652059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin.
    Makino K; Nakajima T; Shikamura M; Ito F; Ando S; Kochi C; Inagawa H; Soma G; Terada H
    Colloids Surf B Biointerfaces; 2004 Jul; 36(1):35-42. PubMed ID: 15261021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a macrophage-targeting and phagocytosis-inducing bio-nanocapsule-based nanocarrier for drug delivery.
    Li H; Tatematsu K; Somiya M; Iijima M; Kuroda S
    Acta Biomater; 2018 Jun; 73():412-423. PubMed ID: 29673839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective targeting of Aβ to macrophages by sonochemically prepared surface-modified protein microspheres.
    Richman M; Perelman A; Gertler A; Rahimipour S
    Biomacromolecules; 2013 Jan; 14(1):110-6. PubMed ID: 23163430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD14 is a component of multiple recognition systems used by macrophages to phagocytose apoptotic lymphocytes.
    Schlegel RA; Krahling S; Callahan MK; Williamson P
    Cell Death Differ; 1999 Jun; 6(6):583-92. PubMed ID: 10381656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release.
    Kimura H; Ogura Y; Moritera T; Honda Y; Tabata Y; Ikada Y
    Curr Eye Res; 1994 May; 13(5):353-60. PubMed ID: 8055699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phagostimulatory effect of uptake of PLGA microspheres loaded with rifampicin on alveolar macrophages.
    Hirota K; Hasegawa T; Nakajima T; Makino K; Terada H
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):293-8. PubMed ID: 21700434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting to macrophages: role of physicochemical properties of particulate carriers--liposomes and microspheres--on the phagocytosis by macrophages.
    Ahsan F; Rivas IP; Khan MA; Torres Suarez AI
    J Control Release; 2002 Feb; 79(1-3):29-40. PubMed ID: 11853916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioresponsive drug delivery for regenerative medicine.
    Park K
    J Control Release; 2008 Sep; 130(3):201. PubMed ID: 18706947
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis.
    Jain N; Moeller J; Vogel V
    Annu Rev Biomed Eng; 2019 Jun; 21():267-297. PubMed ID: 31167103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release drug delivery systems.
    Heng PWS
    Pharm Dev Technol; 2018 Nov; 23(9):833. PubMed ID: 30375914
    [No Abstract]   [Full Text] [Related]  

  • 16. The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells.
    Fahrer J; Rieger J; van Zandbergen G; Barth H
    Biol Chem; 2010 Nov; 391(11):1315-25. PubMed ID: 20868225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofabrication techniques for controlled drug-release devices.
    Chen L; Henein G; Luciani V
    Nanomedicine (Lond); 2011 Jan; 6(1):1-6. PubMed ID: 21182411
    [No Abstract]   [Full Text] [Related]  

  • 18. Drug delivery: Star-shaped pill sustains drug release.
    Crunkhorn S
    Nat Rev Drug Discov; 2016 Dec; 16(1):16-17. PubMed ID: 28031579
    [No Abstract]   [Full Text] [Related]  

  • 19. PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance.
    Gbadamosi JK; Hunter AC; Moghimi SM
    FEBS Lett; 2002 Dec; 532(3):338-44. PubMed ID: 12482589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Uptake of monostearin solid lipid nanoparticles by A549 cells].
    Ding JC; Hu FQ; Yuan H
    Yao Xue Xue Bao; 2004 Nov; 39(11):876-80. PubMed ID: 15696925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.