BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 21366289)

  • 1. Biosynthesis of aminovinyl-cysteine-containing peptides and its application in the production of potential drug candidates.
    Sit CS; Yoganathan S; Vederas JC
    Acc Chem Res; 2011 Apr; 44(4):261-8. PubMed ID: 21366289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxyl Analogue of Mutacin 1140, a Scaffold for Lead Antibacterial Discovery.
    Escano J; Ravichandran A; Salamat B; Smith L
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28500042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cypemycin Decarboxylase CypD Is Not Responsible for Aminovinyl-Cysteine (AviCys) Ring Formation.
    Ding W; Yuan N; Mandalapu D; Mo T; Dong S; Zhang Q
    Org Lett; 2018 Dec; 20(23):7670-7673. PubMed ID: 30451505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermin and gallidermin: Staphylococcal lantibiotics.
    Götz F; Perconti S; Popella P; Werner R; Schlag M
    Int J Med Microbiol; 2014 Jan; 304(1):63-71. PubMed ID: 24119540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of the cypemycin decarboxylase CypD.
    Ding W; Mo T; Mandalapu D; Zhang Q
    Synth Syst Biotechnol; 2018 Sep; 3(3):159-162. PubMed ID: 30345401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides.
    Claesen J; Bibb M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16297-302. PubMed ID: 20805503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergent evolution of the Cys decarboxylases involved in aminovinyl-cysteine (AviCys) biosynthesis.
    Mo T; Yuan H; Wang F; Ma S; Wang J; Li T; Liu G; Yu S; Tan X; Ding W; Zhang Q
    FEBS Lett; 2019 Mar; 593(6):573-580. PubMed ID: 30771247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movements of the Substrate-Binding Clamp of Cypemycin Decarboxylase CypD.
    Liu L; Chan S; Mo T; Ding W; Yu S; Zhang Q; Yuan S
    J Chem Inf Model; 2019 Jun; 59(6):2924-2929. PubMed ID: 31033286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and epilancin K7.
    Bierbaum G; Götz F; Peschel A; Kupke T; van de Kamp M; Sahl HG
    Antonie Van Leeuwenhoek; 1996 Feb; 69(2):119-127. PubMed ID: 8775972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational modifications of lantibiotics.
    Kupke T; Götz F
    Antonie Van Leeuwenhoek; 1996 Feb; 69(2):139-50. PubMed ID: 8775974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hijacking a Linaridin Biosynthetic Intermediate for Lanthipeptide Production.
    Chu L; Cheng J; Zhou C; Mo T; Ji X; Zhu T; Chen J; Ma S; Gao J; Zhang Q
    ACS Chem Biol; 2022 Nov; 17(11):3198-3206. PubMed ID: 36288500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Analysis of Mutacin B-Ny266, a Lantibiotic Active against Caries Pathogens.
    Dufour D; Barbour A; Chan Y; Cheng M; Rahman T; Thorburn M; Stewart C; Finer Y; Gong SG; Lévesque CM
    J Bacteriol; 2020 May; 202(12):. PubMed ID: 32229530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic Formation of an Aminovinyl Cysteine Residue in Ribosomal Peptide Natural Products.
    Cheng B; Xue Y; Duan Y; Liu W
    Chempluschem; 2024 Jun; 89(6):e202400047. PubMed ID: 38517224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to reveal the substrate specificity of the peptidyl-cysteine decarboxylase EpiD.
    Schmid DG; Majer F; Kupke T; Jung G
    Rapid Commun Mass Spectrom; 2002; 16(18):1779-84. PubMed ID: 12207367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin.
    Kupke T; Stevanović S; Sahl HG; Götz F
    J Bacteriol; 1992 Aug; 174(16):5354-61. PubMed ID: 1644762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Flavoenzymes Catalyze the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107 Biosynthesis.
    Ortega MA; Cogan DP; Mukherjee S; Garg N; Li B; Thibodeaux GN; Maffioli SI; Donadio S; Sosio M; Escano J; Smith L; Nair SK; van der Donk WA
    ACS Chem Biol; 2017 Feb; 12(2):548-557. PubMed ID: 28032983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine.
    Barany G; Han Y; Hargittai B; Liu RQ; Varkey JT
    Biopolymers; 2003; 71(6):652-66. PubMed ID: 14991675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lantibiotic engineering: molecular characterization and exploitation of lantibiotic-synthesizing enzymes for peptide engineering.
    Nagao J; Aso Y; Shioya K; Nakayama J; Sonomoto K
    J Mol Microbiol Biotechnol; 2007; 13(4):235-42. PubMed ID: 17827974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifying the Lantibiotic Mutacin 1140 for Increased Yield, Activity, and Stability.
    Geng M; Smith L
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpaC and NisC, the cyclases involved in subtilin and nisin biosynthesis, are zinc proteins.
    Okeley NM; Paul M; Stasser JP; Blackburn N; van der Donk WA
    Biochemistry; 2003 Nov; 42(46):13613-24. PubMed ID: 14622008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.