BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21366534)

  • 41. 3'-bromo analogues of pyrimidine nucleosides as a new class of potent inhibitors of Mycobacterium tuberculosis.
    Shakya N; Srivastav NC; Desroches N; Agrawal B; Kunimoto DY; Kumar R
    J Med Chem; 2010 May; 53(10):4130-40. PubMed ID: 20420370
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development.
    Moraes GL; Gomes GC; Monteiro de Sousa PR; Alves CN; Govender T; Kruger HG; Maguire GE; Lamichhane G; Lameira J
    Tuberculosis (Edinb); 2015 Mar; 95(2):95-111. PubMed ID: 25701501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning and expression of functional shikimate dehydrogenase (EC 1.1.1.25) from Mycobacterium tuberculosis H37Rv.
    Magalhães ML; Pereira CP; Basso LA; Santos DS
    Protein Expr Purif; 2002 Oct; 26(1):59-64. PubMed ID: 12356471
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach.
    Uddin R; Zahra NU; Azam SS
    Comput Biol Chem; 2019 Apr; 79():91-102. PubMed ID: 30743161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies of pyrimidine metabolism during chick development: enzymes involved in CMP breakdown.
    Wegelin I
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1983; 75(2):391-3. PubMed ID: 6138209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection.
    Mohareer K; Asalla S; Banerjee S
    Tuberculosis (Edinb); 2018 Dec; 113():99-121. PubMed ID: 30514519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploring Pyrimidine Pharmacophore as Thymidine Monophosphate Kinase Inhibitors for Antitubercular Activity: A Review.
    Chitre TS; Asgaonkar KD; Patil SM; Kathiravan MK; Padhye SB
    Curr Top Med Chem; 2016; 16(28):3211-3223. PubMed ID: 27150375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemical aspects of the selective antiherpes activity of nucleoside analogues.
    De Clercq E
    Biochem Pharmacol; 1984 Jul; 33(14):2159-69. PubMed ID: 6147138
    [No Abstract]   [Full Text] [Related]  

  • 49. Biochemical characterization of fluoropyrimidine-resistant murine leukemic cell lines.
    Mulkins MA; Heidelberger C
    Cancer Res; 1982 Mar; 42(3):965-73. PubMed ID: 7059992
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hypoxanthine-guanine phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv: cloning, expression, and biochemical characterization.
    Biazus G; Schneider CZ; Palma MS; Basso LA; Santos DS
    Protein Expr Purif; 2009 Aug; 66(2):185-90. PubMed ID: 19362594
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel inhibitor of indole-3-glycerol phosphate synthase with activity against multidrug-resistant Mycobacterium tuberculosis.
    Shen H; Wang F; Zhang Y; Huang Q; Xu S; Hu H; Yue J; Wang H
    FEBS J; 2009 Jan; 276(1):144-54. PubMed ID: 19032598
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Targeting the role of N-terminal methionine processing enzymes in Mycobacterium tuberculosis.
    Olaleye OA; Bishai WR; Liu JO
    Tuberculosis (Edinb); 2009 Dec; 89 Suppl 1():S55-9. PubMed ID: 20006307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Uridine monophosphate kinase as potential target for tuberculosis: from target to lead identification.
    Arvind A; Jain V; Saravanan P; Mohan CG
    Interdiscip Sci; 2013 Dec; 5(4):296-311. PubMed ID: 24402823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Purine and pyrimidine nucleoside phosphorylases - remarkable enzymes still not fully understood].
    Bzowska A
    Postepy Biochem; 2015; 61(3):260-73. PubMed ID: 26677573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria.
    Wheeler PR
    J Gen Microbiol; 1990 Jan; 136(1):189-201. PubMed ID: 2191077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antiparasitic chemotherapy: tinkering with the purine salvage pathway.
    Datta AK; Datta R; Sen B
    Adv Exp Med Biol; 2008; 625():116-32. PubMed ID: 18365663
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pyrimidin-2(1H)-ones based inhibitors of Mycobacterium tuberculosis orotate phosphoribosyltransferase.
    Breda A; Machado P; Rosado LA; Souto AA; Santos DS; Basso LA
    Eur J Med Chem; 2012 Aug; 54():113-22. PubMed ID: 22608674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predictive markers of capecitabine sensitivity identified from the expression profile of pyrimidine nucleoside-metabolizing enzymes.
    Yasuno H; Kurasawa M; Yanagisawa M; Sato Y; Harada N; Mori K
    Oncol Rep; 2013 Feb; 29(2):451-8. PubMed ID: 23229803
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pyrimidine metabolism in Tritrichomonas foetus.
    Jarroll EL; Lindmark DG; Paolella P
    J Parasitol; 1983 Oct; 69(5):846-9. PubMed ID: 6200591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New tuberculostatic agents targeting nucleic acid biosynthesis: drug design using QSAR approaches.
    Bueno RV; Braga RC; Segretti ND; Ferreira EI; Trossini GH; Andrade CH
    Curr Pharm Des; 2014; 20(27):4474-85. PubMed ID: 24245758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.