BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21366597)

  • 1. Predictable patterns of constraint among anthocyanin-regulating transcription factors in Ipomoea.
    Streisfeld MA; Liu D; Rausher MD
    New Phytol; 2011 Jul; 191(1):264-274. PubMed ID: 21366597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxed constraint and evolutionary rate variation between basic helix-loop-helix floral anthocyanin regulators in Ipomoea.
    Streisfeld MA; Rausher MD
    Mol Biol Evol; 2007 Dec; 24(12):2816-26. PubMed ID: 17921484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection favors loss of floral pigmentation in a highly selfing morning glory.
    Duncan TM; Rausher MD
    PLoS One; 2020; 15(4):e0231263. PubMed ID: 32282839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory.
    Morita Y; Saitoh M; Hoshino A; Nitasaka E; Iida S
    Plant Cell Physiol; 2006 Apr; 47(4):457-70. PubMed ID: 16446312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmyb1 in Ipomoea.
    Chang SM; Lu Y; Rausher MD
    Genetics; 2005 Aug; 170(4):1967-78. PubMed ID: 15944366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution of anthocyanin pigmentation genes following losses of flower color.
    Ho WW; Smith SD
    BMC Evol Biol; 2016 May; 16():98. PubMed ID: 27161359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation.
    Zhu Z; Wang H; Wang Y; Guan S; Wang F; Tang J; Zhang R; Xie L; Lu Y
    J Exp Bot; 2015 Jul; 66(13):3775-89. PubMed ID: 25911741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation.
    Park KI; Ishikawa N; Morita Y; Choi JD; Hoshino A; Iida S
    Plant J; 2007 Feb; 49(4):641-54. PubMed ID: 17270013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco.
    Chen K; Du L; Liu H; Liu Y
    BMC Plant Biol; 2019 Sep; 19(1):390. PubMed ID: 31500571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals.
    Li C; Qiu J; Ding L; Huang M; Huang S; Yang G; Yin J
    Plant Physiol Biochem; 2017 Mar; 112():335-345. PubMed ID: 28131062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Conserved and Particular Roles of the R2R3-MYB Regulator FhPAP1 from Freesia hybrida in Flower Anthocyanin Biosynthesis.
    Li Y; Shan X; Tong L; Wei C; Lu K; Li S; Kimani S; Wang S; Wang L; Gao X
    Plant Cell Physiol; 2020 Jul; 61(7):1365-1380. PubMed ID: 32392327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental regulation of floral anthocyanin synthesis in Ipomoea purpurea.
    Lu Y; Du J; Tang J; Wang F; Zhang J; Huang J; Liang W; Wang L
    Mol Ecol; 2009 Sep; 18(18):3857-71. PubMed ID: 19694947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.
    Morita Y; Takagi K; Fukuchi-Mizutani M; Ishiguro K; Tanaka Y; Nitasaka E; Nakayama M; Saito N; Kagami T; Hoshino A; Iida S
    Plant J; 2014 Apr; 78(2):294-304. PubMed ID: 24517863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a
    Zhang Y; Zhou T; Dai Z; Dai X; Li W; Cao M; Li C; Tsai WC; Wu X; Zhai J; Liu Z; Wu S
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of the Bovini tribe (Bovidae, Bovinae): is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?
    MacEachern S; McEwan J; McCulloch A; Mather A; Savin K; Goddard M
    BMC Genomics; 2009 Apr; 10():179. PubMed ID: 19393048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A WD40-repeat protein controls proanthocyanidin and phytomelanin pigmentation in the seed coats of the Japanese morning glory.
    Park KI; Hoshino A
    J Plant Physiol; 2012 Mar; 169(5):523-8. PubMed ID: 22209168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species.
    Streisfeld MA; Rausher MD
    New Phytol; 2009 Aug; 183(3):751-763. PubMed ID: 19594698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered trans-regulatory control of gene expression in multiple anthocyanin genes contributes to adaptive flower color evolution in Mimulus aurantiacus.
    Streisfeld MA; Rausher MD
    Mol Biol Evol; 2009 Feb; 26(2):433-44. PubMed ID: 19029190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors.
    Chen L; Hu B; Qin Y; Hu G; Zhao J
    Plant Physiol Biochem; 2019 Mar; 136():178-187. PubMed ID: 30685697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.
    Hsu CC; Chen YY; Tsai WC; Chen WH; Chen HH
    Plant Physiol; 2015 May; 168(1):175-91. PubMed ID: 25739699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.