BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 21366728)

  • 1. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
    Farnell YF; Shende VR; Neuendorff N; Allen GC; Earnest DJ
    Eur J Neurosci; 2011 Apr; 33(8):1533-40. PubMed ID: 21366728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts.
    Allen G; Rappe J; Earnest DJ; Cassone VM
    J Neurosci; 2001 Oct; 21(20):7937-43. PubMed ID: 11588167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valproic acid phase shifts the rhythmic expression of Period2::Luciferase.
    Johansson AS; Brask J; Owe-Larsson B; Hetta J; Lundkvist GB
    J Biol Rhythms; 2011 Dec; 26(6):541-51. PubMed ID: 22215612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell culture models for oscillator and pacemaker function: recipes for dishes with circadian clocks?
    Earnest DJ; Cassone VM
    Methods Enzymol; 2005; 393():558-78. PubMed ID: 15817312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suprachiasmatic nucleus slices induce molecular oscillations in fibroblasts.
    Li N; Cai Y; Zuo X; Xu S; Zhang Y; Chan P; Zhang YA
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1179-84. PubMed ID: 18977335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian profiling of the transcriptome in NIH/3T3 fibroblasts: comparison with rhythmic gene expression in SCN2.2 cells and the rat SCN.
    Menger GJ; Allen GC; Neuendorff N; Nahm SS; Thomas TL; Cassone VM; Earnest DJ
    Physiol Genomics; 2007 May; 29(3):280-9. PubMed ID: 17284666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells.
    Nagoshi E; Saini C; Bauer C; Laroche T; Naef F; Schibler U
    Cell; 2004 Nov; 119(5):693-705. PubMed ID: 15550250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic post-transcriptional regulation of the circadian clock protein mPER2 in mammalian cells: a real-time analysis.
    Nishii K; Yamanaka I; Yasuda M; Kiyohara YB; Kitayama Y; Kondo T; Yagita K
    Neurosci Lett; 2006 Jun; 401(1-2):44-8. PubMed ID: 16580135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.
    Ono D; Honma S; Honma K
    Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of altered Clock gene expression on the pacemaker properties of SCN2.2 cells and oscillatory properties of NIH/3T3 cells.
    Allen GC; Farnell Y; Bell-Pedersen D; Cassone VM; Earnest DJ
    Neuroscience; 2004; 127(4):989-99. PubMed ID: 15312911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of the suprachiasmatic nucleus coding for day length.
    Naito E; Watanabe T; Tei H; Yoshimura T; Ebihara S
    J Biol Rhythms; 2008 Apr; 23(2):140-9. PubMed ID: 18375863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
    Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK
    eNeuro; 2017; 4(4):. PubMed ID: 28828400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mPer2 antisense oligonucleotides inhibit mPER2 expression but not circadian rhythms of physiological activity in cultured suprachiasmatic nucleus neurons.
    Sugiyama T; Yoshioka T; Ikeda M
    Biochem Biophys Res Commun; 2004 Oct; 323(2):479-83. PubMed ID: 15369776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system.
    Davidson AJ; Castanon-Cervantes O; Leise TL; Molyneux PC; Harrington ME
    Eur J Neurosci; 2009 Jan; 29(1):171-80. PubMed ID: 19032592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Diabetic Mouse Model for Real-Time Monitoring of Clock Gene Oscillation and Blood Pressure Circadian Rhythm.
    Hou T; Su W; Guo Z; Gong MC
    J Biol Rhythms; 2019 Feb; 34(1):51-68. PubMed ID: 30278816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
    Granados-Fuentes D; Hermanstyne TO; Carrasquillo Y; Nerbonne JM; Herzog ED
    J Biol Rhythms; 2015 Oct; 30(5):396-407. PubMed ID: 26152125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks.
    Nakahata Y; Akashi M; Trcka D; Yasuda A; Takumi T
    BMC Mol Biol; 2006 Feb; 7():5. PubMed ID: 16483373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues.
    Sujino M; Nagano M; Fujioka A; Shigeyoshi Y; Inouye ST
    Eur J Neurosci; 2007 Nov; 26(10):2731-8. PubMed ID: 17973924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleocytoplasmic shuttling of clock proteins.
    Tamanini F; Yagita K; Okamura H; van der Horst GT
    Methods Enzymol; 2005; 393():418-35. PubMed ID: 15817303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.