These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21366962)

  • 1. Biodegradation of brassica haulms by white rot fungus Pleurotus eryngii.
    Singh MP; Pandey VK; Srivastava AK; Viswakarma SK
    Cell Mol Biol (Noisy-le-grand); 2011 Feb; 57(1):47-55. PubMed ID: 21366962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus.
    Pandey VK; Singh MP; Srivastava AK; Vishwakarma SK; Takshak S
    Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):8-14. PubMed ID: 23273185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of wheat straw by Pleurotus ostreatus.
    Pandey VK; Singh MP
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):29-34. PubMed ID: 25535709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw.
    Taniguchi M; Suzuki H; Watanabe D; Sakai K; Hoshino K; Tanaka T
    J Biosci Bioeng; 2005 Dec; 100(6):637-43. PubMed ID: 16473773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infra-red spectroscopic analyses of banana waste degraded by oyster mushroom.
    Reddy GV; Shah MP; Kothari IL; Ray A
    Indian J Exp Biol; 2002 Sep; 40(9):1038-42. PubMed ID: 12587734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation.
    Xie C; Luo W; Li Z; Yan L; Zhu Z; Wang J; Hu Z; Peng Y
    Electrophoresis; 2016 Jan; 37(2):310-20. PubMed ID: 26525014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of agro-industrial wastes by a edible mushroom Pleurotus tuber-regium (Fr.).
    Kuforiji OO; Fasidi IO
    J Environ Biol; 2009 May; 30(3):355-8. PubMed ID: 20120458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Releasing nitrogen from ammoniated lignin by white rot fungus cometabolizes environmental pollutants.
    Lin L; Zhao DQ; Zhou XT; Qiu YG; Zhang G
    J Environ Sci (China); 2003 Sep; 15(5):577-82. PubMed ID: 14562914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium.
    Baldrian P; Gabriel J
    FEMS Microbiol Lett; 2003 Mar; 220(2):235-40. PubMed ID: 12670686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc.
    Baldrian P; Valásková V; Merhautová V; Gabriel J
    Res Microbiol; 2005; 156(5-6):670-6. PubMed ID: 15921894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free comparative proteomic analysis of Pleurotus eryngii grown on sawdust, bagasse, and peanut shell substrates.
    Li Z; Zhao C; Zhou Y; Zheng S; Hu Q; Zou Y
    J Proteomics; 2024 Mar; 294():105074. PubMed ID: 38199305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological pretreatment of softwood Pinus densiflora by three white rot fungi.
    Lee JW; Gwak KS; Park JY; Park MJ; Choi DH; Kwon M; Choi IG
    J Microbiol; 2007 Dec; 45(6):485-91. PubMed ID: 18176529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus].
    Kadimaliev DA; Revin VV; Atykian NA; Samuilov VD
    Prikl Biokhim Mikrobiol; 2003; 39(5):555-60. PubMed ID: 14593869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products.
    Obodai M; Cleland-Okine J; Vowotor KA
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):146-9. PubMed ID: 12715251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating lignin and hemicellulose in white rot fungus-pretreated wood that affect enzymatic hydrolysis.
    Wang W; Yuan T; Cui B; Dai Y
    Bioresour Technol; 2013 Apr; 134():381-5. PubMed ID: 23489565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover.
    Xu C; Ma F; Zhang X
    J Biosci Bioeng; 2009 Nov; 108(5):372-5. PubMed ID: 19804859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of lignocellulosic wastes for production of edible mushrooms.
    Rani P; Kalyani N; Prathiba K
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):151-9. PubMed ID: 18327544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer.
    Jonathan SG; Fasidi IO; Ajayi AO; Adegeye O
    Bioresour Technol; 2008 Mar; 99(4):807-11. PubMed ID: 17391957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promising cellulolytic fungi isolates for rice straw degradation.
    Pedraza-Zapata DC; Sánchez-Garibello AM; Quevedo-Hidalgo B; Moreno-Sarmiento N; Gutiérrez-Rojas I
    J Microbiol; 2017 Sep; 55(9):711-719. PubMed ID: 28865071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin degradation by Agaricus bisporus accounts for a 30% increase in bioavailable holocellulose during cultivation on compost.
    ten Have R; Wijngaard H; Ariës-Kronenburg NA; Straatsma G; Schaap PJ
    J Agric Food Chem; 2003 Apr; 51(8):2242-5. PubMed ID: 12670164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.